Simulation and Optimization of
JPEG and Motion JPEG

Christos Bohoris

MSc Telematics (Telecommunications and Computer Engineering)

1998

Table of Contents

TaDIE Of CONLENLS.......eiuiieiieeiee et bbbt se et e e e et enes 2
Y 01 o TP 4
Chapter 1 - History of JPEG COMPIESSION.......cciviierieriieiesieseesiesreeseessesssessessessssssessesssessens 5
1.2 INtroduCtioN T0 JPEG ..ottt ene 5
1.2 FOrmation Of the JPEG GrOUPDcciviireeieieriesieseese st sae e e sae e e e sse e esse e saesresneensens 6
1.3 Work of the JPEG COMIMITIEE.ciiiiieerieererere et 6
1.4 JPEG REUITEIMENTS.eiiiiiieitesieeeesieetie e seesae st e e sesseesa e e seesaesseansesseensessesneessessesneens 7
1.5 The Finalized JPEG Standard...........cccoieeiiiiiie et et s ee e sae e snee 8
Chapter 2 - JPEG and Image COMPIESSIONcc.eeeerierieriereesiesieereesiesseeseeseeseesresesssesseens 10
2.1 OVEIVIEW OF JPEGoeiii ettt sttt et e e sneesnte e neenne e neesneenneeas 10
2.2 JPEG Still IMage COMPIESSIONc.ueiueiierieeiereesieetesiesseesieseessessesssessesesseesseesssssesneens 10
2.3 JPEG and the other Standards...........coccovereiriererieree e 12
2.4 AdvantageS Of JPEG........cocoiuiiiiiinieie ettt e st n e nne s 14
I G = 0] 117 0= PR 15
2.6 Motion JPEG and Video COMPIESSION.......cceeiuerierierierieesieseeseesieseesseseeseesseesesssesseens 19
Chapter 3 - The JPEG AIQOItNMc.ciiiie e e 20
TN o [0 g o = o = PR 20
3.2TheBaseliNnE MOooee ettt ennee s 22
3.3 TransfOrMation SEAGE........ccevuirieriereeiee ettt st se e bbb saesre e e sreeneenne s 24
G @ 111 14 1 o o 27
3.5 COUING MOAE ...ttt sae e e e e nneens 28
G = g1 0])V @[] oo TH SRR 30
3.7 The Motion JPEG algorithm........c.ccciiiiiiceceee e e 33
3.8 MOLION ESHIMELION ...ttt sttt 35
Chapter 4 - EXPerimental WOTK........ccoiiiiiiiiciicieec st 37
v N o = @ o111 102 o o PSSR 37

4.1.1 JPEG Performance ANAIYSIS........cccuiiiieiiiiiie e seesie st sre e eas 37
4.2 The MOtioN JPEG ENCOOEYccceeiiriiriirieniisie ettt se e 40

4.2.1 Addition of aMotion JPEG ENCOAEYccourueieirinininiesieseeeeese st 40

4.2.2 Setting the MacroblOCKSccccieiiicee s 42

4.2.3 Setting the Search WINAOWS.........ccoiiiieiiiicc e 44

4.2.4 MOLION ESHMELIONecvviiiieieie ettt s aesreesae e sneennas 45

4.2.5 The ENCOUING PrOCESS........coiiuieiiitisiiee st ste et sae st ae st sse e esae e nee e 48

4.2.6 The Motion JPEG tyPe FramES........cccciiiiiiieiie e steeie e e s 50
4.3 The MOtioN JPEG DECOUEScoeieriiriiriesiesesieie ettt se e 52

4.3.1 Addition of aMotion JPEG DECOUEY.........cccveereriririesesesie e 52

4.3.2 Theldeaof aVirtual Frame..........ccccoeieiiiiie et 53

4.3.3 The DECOUING PrOCESScooieiieiieeierierie e sttt st s 53

4.3.4 The Decoded RaW FIrameS.........ccciieieeiieeie e s ete e ste et 55
Chapter 5 - CONCIUSIONS........coitiiiiiisiieiesee ettt st e e b ee b sseeneesreeneens 59

5.1 Project Discussion and CONCIUSIONS..........coiereiierierieiesiee et 59

5.1.1 JPEG PEfOrMENCE........coiiriiiie ettt s 59

5.1.2 Motion JPEG for Video COMPIESSION........ccuiiuererriesieeeesiesseesiesessessreseeseesseenens 60

5.1.3 The Motion JPEG ENCOUEr DESIQN.......coireriirieeieieesieeiesee st 60

5.1.4 The Motion JPEG DeCOder DESIONcccuviiiieiiecieiesieeesie e 61
REFEIBNCES.......coeeeet ittt et bbb et enas 62
Appendix A — Encoder Profiling RESUILSccooeeiiiiiiii e, 63
Appendix B — Decoder Profiling RESUILS ... 78
Appendix C — Motion JPEG Coder Source Code........ccooeeviiiiiiiiiiiieicee e, 92
(1L o T=To ol (4o o [1i ox=T1ToT 0 1) FR PRSP 92
1 Lo 0] o T=To =] o o SURPPPPPPRPRPPNS 103.......
1 L= 0] 0 T=Te o [T o o PPPPPRPRPPRS 121.......

FIlE: MYPEG. N e 137.....

Abstract

The aim of this project was to examine the optimization possibilities of the
standard JPEG code and to extend the capabilities of JPEG by adding a Motion JPEG
coder. In the beginning of the project the possibility of optimization of the JPEG code, as
written in C, was examined along with a thorough search for algorithms that could
perform specific, time consuming tasks faster. Along with the study of the JPEG code,
detailed results were obtained on the performance of each function in the algorithm for
both encoding and decoding parts. From the study of the currently used algorithms, the
performance results and the search for newer, more efficient algorithms, JPEG was
found to perform quite well. The focus of the project was then directed in the
implementation of the Motion JPEG addition. In the first steps of dealing with this task,
various video coding standards such as H.263 and MPEG-2 had to be carefully studied.
A complete motion JPEG coder consisting of a video encoder and decoder was finally
implemented. The results were tested using a sequence of frames taken as parameters of

the program, in line with the standard JPEG input structure.

Chapter 1 - History of JPEG Compression

1.1 Introduction to JPEG

The main problem for many applications of digital images is the huge amount of

data required to represent an image directly. A digitized version of a single color picture

at normal TV resolution typically contains about 1 million bytes. Such an image needs to

be compressed for storage or transmission. The actual compression ratio varies from

100:1 to 2:1 depending on the specific application and the encoder/decoder complexity.

State of the art techniques can compress images by a factor of 10 to 50 without
significantly affecting the image quality. For the applications of storage or transmission

on the bandwidth- limited channels which are widespread in today’s market, a standard
image compression method is required to get more efficient use of media or channels and
to enable interoperability of equipment developed by different manufacturers.

JPEG has recently been recognized as the most popular and efficient coding
technique for continuous-tone still images. It can usually yield a satisfactory solution to
most of the practical coding problems. The technique provides a flexible and
comprehensive encoding framework that could open a broad range of still image
applications. To meet the requirements of widely different applications JPEG defines four
encoding modes:

1. Sequential Encoding: The image is encoded in a raster scan fashion from left to right

and top to bottom.

2. Progressive Encoding: The image is encoded in multiple scans at the same spatia
resolution.

3. Lossless Encoding: The image is encoded to guarantee exact recovery of every source
sample value.

4. Hierarchical Encoding: The image is encoded at multiple spatial resolutions.

The whole implementation is standardized and internationally accepted, being the

product of collaboration between many countries and standardization bodies, after many

years of research.

1.2 Formation of the JPEG group

In 1982 researchers initiated activity in ISO on a color image compression
standard. This resulted in the formation of a photographic experts group under
ISO/TC97/SC2 Working Group 8, responsible for the development of a progressive
data compression scheme that would be able to operate at the ISDN rate of 64Kbits/sec.
In 1986 they were joined by the CCITT Study Group VIII. At that time, the collaboration
between ISO and CCITT was actively encouraged in order to avoid the creation of
competing, independently developed standards. The Joint Photographic Experts Group
(JPEG) was therefore established for the purpose of developing a still image

compression standard that would meet the needs of many different applications.

1.3 Work of the JPEG committee

The JPEG image compression standard was intended to cover the widest range of

applications consistent with a number of predefined requirements. It should have the
capability for sequential, progressive, lossy and lossless coding. The approach that JPEG

would follow was selected after a number of competitive contests. Twelve proposals

following widely different approaches were registered in March 1987, as candidates for

the compression method: “Generalized Block Truncation Coding”, “Progressive Coding
Scheme”, “Adaptive DCT”, “Component VQ”, “Quadtree Extension of Block Truncation
Coding”, “Adaptive Discrete Cosine Transform”, “Progressive Recursive Binary
Nesting”, “Adapting Transform and Differential Entropy Coding”, DCT with Low Block-
to-Block Distortion”, “Block List Transform Coding of Images”, “HPC” and “DPCM
using Adaptive Binary Arithmetic Coding”.

By June 1987, 10 proposals were supported with complete documentation and
executable code. After extensive testing, the field was narrowed to three techniques. The
Adaptive Discrete Cosine Transform proposed by the ESPRIT PICA group had the best
image quality at high compression rates of even 0.75 bit/pixel. The proposal based on
DPCM (Differential Pulse Code Modulation) with adaptive arithmetic coding had
exceptional images at 0.25 bit/pixel. Finally, the progressive block truncation technique,
proposed by the Japanese, did well with most requirements while having competitive
image quality. The three methods were further refined and enhanced for further testing.
At the January 1998 meeting in Copenhagen, extensive evaluation was done to compare
the three methods. From the three finalists, the Adaptive Discrete Cosine Transform was
selected because of the superior image quality and its demonstrated feasibility in both

hardware and software forms.

1.4 JPEG Requirements

The goal of the JPEG group has been to develop an image compression technique

that meets a number of diverse requirements, the most significant of which are the
following:
* Provide state of the art image compression.

* Allow users to easily adjust the desired compression and image quality.

» The method should not be restricted by the image type. It should work independently
of the image characteristics such as content, color space, dimensions and pixel
resolution.

e |t should have a modest amount of computational complexity that will easily allow
both software and hardware implementations.

* Allow hierarchical encoding so that a low-resolution version of the image can be
accessed without the need to decompress the image at full resolution.

* Allow both sequential and progressive coding.

All these requirements are fairly strict and required many years of design work before

JPEG could actually guarantee them.

1.5 The Finalized JPEG Standard

Later in 1988, a Transform Technique Enhancement Group was formed within

JPEG for the purpose of considering refinements and enhancements. The work continued
till November 1994 when the CD for ISO/IEC 10918-3 was finalized. The whole project
was successful, al the initia requirements were met and JPEG was finally able to deliver
impressive results. Possible bit rates and qualities can be estimated as seen in the
following Table (Table 1.1):

Compression rate (bit/pixel) Quality

0.25-0.5 Moderate to good quality.
0.50-0.75 Good to very good quality.
0.75-1.5 Excellent images.
1.50-2.0 Indistinguishable images.

Table 1.1 - Possible Compression Rates and Quality.

Today JPEG is widely used in many different applications. JPEG chips are
available for alow price and many manufacturers also include with it video-compression
standards, such as H.261, MPEG and Maotion JPEG. Typicaly, a 10MHz chip can
compress a full-page 24-bit color, 300-dpi image from 25MB to 1MB in about 1 second,
and the processing time continues to decrease rapidly. The fast implementation makes
JPEG easily applicable to applications like color facsimile, high-quality newspaper wire
photos, desktop publishing, medical imaging, imaging scanners, electronic digital
cameras, and so forth.

Equally important is the fact that JPEG gave researchers the experience needed to
move on to implementing video compression standards such as MPEG and H.263. The
low manufacturing costs and speed of JPEG chips has aso led many manufacturersto the
development of an additional mode of operation for video sequences, called Motion
JPEG. In Motion JPEG, each frame of a video stream is compressed independently using
the JPEG agorithm. Real-time compression and decompression is possible using low
cost video boards along with a JPEG chip. Motion JPEG plays a significant role for tasks
like video editing but lucks audio support as well as the high levels of compression given
by other standards like MPEG. A large variety of Motion JPEG implementations can be

found today but due to luck of standardization most of them are vendor dependent.

10

Chapter 2 - JPEG and Image Compression

2.1 Overview of JPEG

JPEG is one of the most popular image compression mechanisms. It stands for

Joint Photographic Experts Group (JPEG), the original name of the committee that wrote

the standard. JPEG was designed to compress true-color or gray-scale images of natural,
real-world scenes. It works well on photographs but not so well on letters or line
drawings. JPEG is ‘lossy’, meaning that the compressed image is not identical to the
original. It achieves excellent compression ratios by exploiting weaknesses in human
visual perception, which is not capable of assimilating all of the information contained in
a pixel image. Although JPEG was developed for compressing still photographs, if these
can be decompressed at a sufficient rate then it can be used for digital video. This so-
called ‘motion JPEG’ (M-JPEG) is an integral part to several digital video systems such

as Apple’s QuickTime.

2.2 JPEG Still Image Compression

The algorithms used in a compression process are known as codecs. The JPEG
codec compresses images by removing some of the information contained in the pixels of
an image. To achieve this, JPEG exploits known limitations of the human eye, notably
the fact that small color changes are perceived less accurately than small changes in

brightness. Thus, JPEG is intended for compressing images that will be looked at by

11

humans. For applications where an image must be scanned and analyzed by a machine,
the losses introduced by JPEG compression may be unacceptable. One example is
photographic Astronomy where photographs of distant objects are analyzed and the
smallest information contained in the image pixels may be important. A useful property
of JPEG is that the degree of loss can be varied by adjusting compression parameters.
This means that the user can tradeoff file size against output image quality. High
compression means low image quality while low compression means excellent image
quality. One can make extremely smal files if the poor quality is acceptable in
applications such as indexing of image archives. In most cases what users do istry to find
the highest compression that still gives enough quality to satisfy their needs. Another
important aspect of JPEG is that decoders can trade off decoding speed against image
quality, by using fast but inaccurate approximations to the required calculations. Some
viewers obtain remarkable speedups in this way. Encoders can aso trade accuracy for
speed, but there's usually less reason to make such a sacrifice when writing afile.

While most image file formats use an RGB (red, green, blue) value to describe
each pixe vaue, the JPEG format converts this data to luminance (brightness) and
chrominance (hue). This allows for separate compression of these two factors. Since the
luminance is more important to our senses than the chrominance, the agorithm retains
more of the luminance in the compressed file. The JPEG compression algorithm works
on individual blocks of 8 x 8 pixels. It calculates a Discrete Cosine Transform (DCT) for
the entire block, quantizes the DCT coefficients, and then applies a Variable Length Code
compression scheme to the coefficients. It's in the quantization step where the loss of
color information occurs. The DCT is the reason why JPEG doesn't do so well on sharp
edges. The DCT tries to represent the image as a sum of mathematical curves. That works

great on relatively smooth images but not so well on sharp jumps.

12

2.3 JPEG and the other Standards

For any standard to become popular it must offer significant advantages over the

other standards of its kind. Here are some of the most important image compression

formats available today:

Graphics | nterchange Format (GIF)

The Graphics Interchange format (GIF) is a trademark of CompuServe
Corporation who developed it for the efficient storage and transfer of image data. It isa
lossless format that can store 8 bit color images, supporting transparency and multiple
images in the same file. GIF works best with limited color drawings and not with
photographs, JPEG’s main strength. However when it comes to drawings the JPEG
algorithm can have problems mainly with pictures containing sharp corners and uniform

colors.

Tagged Interchange File Format (TIFF)

One popular image compression format is the Tagged Interchange File Format
(TIFF). It was developed by Adobe Systems and Microsoft Corporation for the
interchange of graphics and imaging data between software programs. A compressed
TIFF file contains data encoded using the Huffman algorithm.

Portable Network Graphics (PNG)

A new, lossless image compression format with growing popularity and support is

the Portable Network Graphics (PNG) format. PNG uses a deflate compression method
(an LZ77 derivative) also used in the zip data compression algorithm. It can compress
true color images with up to 48 bits per pixel, compared to JPEG’s 24 bits. It also
supports transparency and progressive display mode. It is designed to be simple, portable

and flexible so that it can support future extensions.

| tested the above formats to see how well they perform compared to JPEG using
a sample 24-bit bitmap which | converted to JPG, GIF, PNG and TIFF images. My

sample results are as seen in the following table (Table 2.1).

13

Format BMP JPG GIF PNG TIFF
Size (bytes) 2,359,350 271,068 406,374 537,869 754,158
Compression None. 88% 83% 7% 68%
Quiality Excellent Excellent Good Excellent Excellent

Table 2.1 — Image Comparison Test.

JPEG gave the best compression result with the quality scale set to 95%. The quality of
the image was excellent, better than the quality produced by the GIF format. The TIFF
image had excellent quality but it produced the biggest output file. The PNG format
produced an excellent quality image while still achieving significant compression. The
following table (Table 2.2) lists the mgjor characteristics of each format.

JPEG GIF TIFF PNG
Color Depth 24-bit 8-bit 24-bit 48-bit
ProgressveMode Yes Yes No Yes
Strength Photographs Drawings Everything Everything
Transparency No Yes No Yes

Table 2.2 — Image Characteristics Comparison.

14

2.4 Advantages of JPEG

Let’'s see some of the benefits we can achieve by compressing an image to JPEG

format.

Save hard disk space in modern computer systems.

In our days it is fairly easy for anyone to own a database of photographs, pictures
or images. JPEG compression can significantly reduce the size of pictures so that the total

size of image databases remains small.

Reduce image manipulation times.

Raw scanned image files are typically very large, making their processing or
manipulation difficult through graphics applications. Obviously JPEG compression can

efficiently solve this problem by keeping their size small.

Achieve quicker image transmission times.

A JPEG image file can be transmitted much quicker than its original. This means
both time and cost savings, as transmissions can be expensive. If a communications
device includes the JPEG code inside a DSP chip it can encode images to JPEG format
before transmission. The images can be transmitted and then decoded back to the original
image at the receiver. This of course means some loss of quality but again transmission

costs are also very important.

JPEG compression is very popular.

Indeed today it is difficult to find a graphics application that does not support the
JPEG format. The fast, graphics-oriented modern computers along with the continuously
growing popularity of the Internet have helped the JPEG format to become very popular

among both professionals and home users.

15

2.5 JPEG Performance

JPEG compression achieves excellent results with photographs or true color images.
Figure 2.1 shows a bitmap (Left) of 59KB size and a JPEG image (Right) of 9.8KB size.
As it can be seen the JPEG image retains the quality of the original image while in this

case it is about 6 times smaller. The quality factor of the JPEG image was set to 75%, a

number that is considered to give good performance for most images.

Figure 2.1 — A 56KB Bitmap (Left) compared to a 10KB JPEG Image (Right)

In reality the JPEG image is different from the origina image. A magnified close-up of
the previous picture as seen in Figure 2.2 shows differences between the original bitmap
(Left) and the JPEG image (Right).

16

e YW

Figure 2.2 — A detail at 600% magnification of the photographs of figure 2.1.
The differences between the original image (Left) and the JPEG image (Right)

are now noticeable.

The more distinct differences between the two images appear in the parts that contain line
edges and in the parts that contain a large area of uniform color. This reflects the
weakness of JPEG in both these aress.

In another test performed, a 2.25MB bitmap was converted to various JPEG
images of avariable quality factor. With quality set to 100% the size of the JPEG file was
763KB. For different values of the quality factor from 0% to 100% the following table
(Table 2.3) was constructed, showing the corresponding file size (representing the output
bit rate of the JPEG a gorithm).

Quality Size
(%) (KB)
0 14.4
5 17.7
10 25.8
15 33.7
20 40.7
25 47.5
30 53.8
35 60
40 65
45 70.8
50 76.1
55 81.6
60 88.9
65 98.9
70 112
75 131
80 164
85 206
90 266
95 388
100 763

Table 2.3 - JPEG Quality and Image Size.

17

18

From table 2.3 the following graph (Figure 2.3) was created.

JPEG Quality and Image Size

900

700

500 | mQuality
400 | OSize

300 ’77 l

100 I
. |

1 3 5 7 9 11 13 15 17 19 21

Figure 2.3 - Quality (%) and Image Size (KB).

From this graph it is seen that the size of the file dramatically reduces as the quality falls
from 100% to around 85% while after that the decrease in size is smaller. The important
conclusion obtained from this graph is that JPEG offers great file size reduction while the
quality of theimageisin high levels.

The performance of JPEG was also found to be very good compared to other popular

image formats giving the best compression among all in my sample comparison test.

19

The JPEG format offers many advantages for users and most probably it will still be

widely used in the future for both image and video compression purposes.

2.6 Motion JPEG and Video Compression
Uncompressed digital video can generate dozens of megabytes of data per second.

That's far more than any computer can cope with, so some method of compressing all
that data is vital when working with digital video. There are several codecs in popular
today, including Intel’'s Indeo, MPEG and Motion JPEG (M-JPEG). Each compression
format has its own advantages so that one’s choice depends on the type of application.
Video editing requires the ability to work with individual frames something that can’t be
done properly if much of the visual data for each frame has been lost during compression,
as in the case of MPEG. Because of this, professional capture cards housed inside modern
computer systems tend to use M-JPEG. M-JPEG is a multiple image version of JPEG.
M-JPEG has no inter-frame compression so that a clip can be edited with single frame
precision. Often, video files are captured and edited using M-JPEG, and then converted
into a more compact format such as MPEG, when all the editing work has been done.
Various vendors have applied M-JPEG compression to video sequences. Unfortunately,
in the absence of any recognized M-JPEG standard, they've each done it differently. As a

result these files are usually not compatible across different vendors.

20

Chapter 3 - The JPEG Algorithm

3.1 Color Space

Since Newton'’s time it has been known that a wide spectrum of colors can be
generated from a set of three primaries. These three primary colors are red, yellow, and
blue and define the RGB (red, green, blue) color space. A 3-D representation of the RGB

color space can be seen in the figure below (Figure 3.1).

R

+———White

G

Black

Figure 3.1 - The RGB Color Coordinate System.

In 1931 the Commission Internationale de L’ Eclairage (CIE) developed a television
specification which introduced the concept of isolating the luminance (brightness) from
the chrominance (hue). Based on the CIE specification the National Television System

Committee (NTSC) in America, defined the transmission of signals in a luminance and

21

chrominance format that formed a color space called Y1Q. In Europe the PAL/SECAM
televison standards were defined that used a color space named YUV. The only
difference of YUV and YI1Q color spacesis a 33 degrees rotation in UV space. The JPEG
format uses the YUV color space. YUV is related to RGB as seen in the following

matrix,

YO 00299 0587 0.114(TRD

00O 0.0
%J S=50148 -0.289 0.43.7533D
v E 0615 -0515 -0.100EBH

Alternatively,
Y=029(R-G)+G+0.114 (B-G)
U=0.493(B-Y)
V=0.877 (R-Y)

The following figure (Figure 3.2) illustrates the relationship between the YUV color

space and the RGB color space.

22

Plane for U=0

=1

T " Plane for V=0
PlaneforY=03 __ ,

Figure 3.2 — Relationship between YUV and RGB.

For JPEG the YUV format has the advantage that concentrates more image information
in the luminance and less in the chrominance. The result is that the YUV elements are
less correlated and therefore, can be coded separately without much loss in efficiency.
The conversion from RGB to YUV color space is usualy the first step toward

compressing an image.

3.2 The Baseline Model

In the following figure (Figure 3.3), we can easily see how the JPEG agorithm

works both at the encoding (converting a raw image to JPEG format) and decoding phase
(converting a JPEG image back to the original raw image). Note that for the decoding

part the inverse steps are followed.

23

Input Ot
Encoder Decoder
)) Inverse Dizcrete
Tranzform
. Inverse
Quantizer Guartizer
Encoding Model Decoding Model
Ertropy Ertropy
Encoder Decoder

Transmission

Figure 3.3 — The JPEG Block Diagram.

The JPEG baseline (ADCT) model consists of the following stages,

Transformation Stage: Concentrates the information energy to the first few transform
coefficients.

Quantizer: Causes a controlled loss of information.

Two coding Stages: Further compress the image data.

24

3.3 Transformation Stage

For each separate color component, the image is broken into 8 by 8 blocks of
picture elements, which join end to end across the image. The transform method chosen
by JPEG is the two-dimensional 8 by 8 DCT which can be obtained by performing a one
dimensional DCT on the columns and a one dimensional DCT on the rows of the image.
The choice of DCT in JPEG is motivated by the many benefitsit offers:

» DCT is image independent. This is an important issue since an image dependent
algorithm implies that additional computations need to be performed.

« DCT is an orthogonal transform. If in matrix form the DCT output isY = T X T |,
then the inverse transformis X = T'Y T where the transformation from X to Y is
simply the forward DCT.

* An important property of the 2-D DCT and IDCT transforms is separability. This
means that the 2-D DCT can be obtained by first performing 1-D DCTs of the rows
followed by 1-D DCTs of the columns. This property can be exploited to simplify the
hardware requirements of a hardware design at the expense of dlight increase in the
overall operations count.

» DCT computations can be performed with a variety of algorithms. All these
algorithms have different advantages and disadvantages mainly in what regards

simplicity and speed of execution.

An explicit formula for the two dimensional 8 by 8 DCT can be written in terms of the

pixel valuesf (i, j), and the frequency domain transform coefficientsf (u, v) as,

F(u,v) = 1/ 4)C(u)C(v)i i f(i, j) cos((2i +1urr/16)cos((2] +v7r/16)

Where,

(/2 x=0 U
C(x) =1 V2 O
B! otherwiser]

25
The inverse of the two-dimensional DCT iswritten as,

f(Q,j)=@/ 4)2 7 C(U)C(V)F (u,V) cos((2i +urr/16) cos((2j +)v7r/16)

Let’'s consider the example of an image consisting of two different colors. One of the
colors is represented by an ‘O’ and the other by an ‘X’ as shown below

000000
OXEEEE0
ZECEEEE
ZECEEEE
P ES 44544
ZECEEEE
OEEEEEE0
0003000

If we assign O =10 and X= 10 (values10 and 10 are selected to make the calculations
easier) the image information looks like (Table 3.1),

-10 -10 -10 10 10 -10 -10 -10
-10 10 10 10 10 10 10 -10
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10
-10 10 10 10 10 10 10 -10
-10 -10 -10 10 10 -10 -10 -10

Table 3.1 — DCT input values.

26

The frequency domain representation, with al values rounded to the nearest integer can
be seen in the following table (Table 3.2),

40 0 -26 0 0 0 -11 0
0 0 0 0 0 0 0 0
—-45 0 —24 0 8 0 -10 0
0 0 0 0 0 0 0
-20 0 0 20 0 0 0
0 0 0 0 0 0 0 0
-3 0 10 0 18 0 4 0
0 0 0 0 0 0 0 0

Table 3.2 — DCT output values.

Notice the zeroes produced in the above table. They actually represent the reduction of
data caused by the transform. We now have many zero coefficients as well as a
concentration of the energy around the upper left corner of the matrix. The energy
distribution has now changed but the total energy still remains the same, because the
DCT is a unitary transformation. Also since the DCT is unitary the maximum value of
each 8 by 8 DCT coefficient is limited to afactor of eight times the original values. When
the inverse DCT of the block is calculated and the values are rounded to the nearest
integer we come back to the original image, although an exact reconstruction is not
possible with an integer value DCT.

The straightforward calculation of DCT for a JPEG 8x8 block suggests that each
coefficient needs 64 multiplies and 63 additions. However, this gives a misleading
impression about complexity. Many cost-effective hardware and software
implementations are already available for the smple DCT, implementing both the DCT

27

aone and the DCT based JPEG compression. Through the years many fast DCT
algorithms have been aso implemented.

3.4 Quantization

The coefficients of the DCT are quantized so that their magnitude reduces and the
number of zero value coefficients increases. The uniform midstep quantizer is used for
the JPEG baseline method, where the stepsize is varied according to the coefficient
location and the color component that is encoded. The quantizer transfer function can be
seen in figure 3.4. Quantization is the lossy stage in the JPEG coding scheme. If we
guantize too coarse, we may end up with images that look “blocky”, but if we quantize
too fine, we may spend useless bits coding noise. The quantization process is controlled
by the Q-Factor, a number that is used to easily change the default quantization matrix. If
the Q-Factor is 0, we bypass this step. A high value of the Q-Factor means high levels of
compression, a low value of the Q-Factor means better image quality. For the

guantization process each DCT value V is transformed as in the following equation,

Vo =round(V/2x Q)

As it can be seen, quantization reduces the accuracy of the DCT values with lower
precision resulting to a lower bit rate in the compressed data stream. Due to this loss of
precision any reconstructed DCT values will be approximations of the values taken
before the quantization. It is very important though that the quantization factor Q is

carefully chosen to avoid unwanted distortions.

28

Figure 3.4 — The quantizer Transfer Function.

3.5 Coding Model

The purpose of the quantizer is to rearrange the quantized DCT coefficientsinto a
zigzag pattern (Figure 3.5), with the lowest frequencies first and the highest frequencies
last. The reason this is done is because the zigzag pattern can increase the run-length of

zero coefficients found in the block. The assumption is that the lowest frequencies tend to
have larger coefficients and the highest frequencies are, by the nature of most pictures,
predominantly zero. The DC coefficients of the image often vary dightly between
successive blocks. The coding of the DC coefficient exploits this property through
Differential Pulse Code Modulation (DPCM). This technique codes the difference

29

between the quantized DC coefficient of the block and the quantized DC coefficient of

the previous block.

Figure 3.5 — The zigzag pattern followed for an 8x8 block.

After cdculation of the DPCM code, the actual DC code is then given by the size of bits
of the DPCM code followed by its significant bits. The quantized AC coefficients usually
contain runs of consecutive zeroes. Therefore, a coding advantage can be obtained by
using a run-length technique.

Run length coding accepts a series of input values and then checks the sequence

for zeroes. Let’s consider an example sequence of number as given below,

000050031000000,00000040002000,6

This sequence contains 30 different values. Typically, because of the DCT and
guantization process, many zeroes will appear just like in our example. Run length
coding achieves further compression by transforming a sequence to a new smaller
sequence which includes the number of zeroes appearing before a non-zero value along

with the value itself. After run length our sequence becomes,

30

4-5, 2-3,0-1, 12-4, 3-2, 3-6

There are 4 Os followed by a 5, 2 Os followed by a 3 and so on. This sequence contains

only 12 values and thus compression was achieved.

3.6 Entropy Coding

The block codes from the DPCM and run-length models can be further
compressed using entropy coding. For the baseline JPEG method, a Huffman coder is
used to compress the data closer to symbol entropy. One reason for using a Huffman
coder isthat it is easily implemented in hardware. In order to compress data symbols, the
Huffman coder creates shorter codes for frequently occurring symbols and longer codes
for occasionally occurring symbols. Let's consider the example of encoding an excerpt
from Michael Jackson’s song ‘Bad’.

Because I'm bad, I'm bad come on
Bad, bad really, really bad
You know I'm bad, I'm bad
You know it
Bad, bad really, really bad
You know I'm bad, I'm bad

Bad, bad really, really bad

The first step in creating Huffman codes is to create a table assigning a frequency count
to each phrase. In the above lyrics, ignoring capitalization, this is shown in the following
table (Table 3.3).

31

Phrase Symbol Frequency
Because B 1

I'm I 6

Bad B 15

Come on C 2

It I 1

Really R

You know Y 4

Table 3.3 - Huffman coding table.

Initially all symbols are designated as the leaf nodes of a tree. Starting from the two least

weight nodes, the pair ‘Because’ and ‘It’ is aggregated into a new node. The node holds
symbols ‘b’ and ‘i’, each occurring only once (1 + 1) so the name of the node is (bi 2).
This process is repeated until the entire symbol set is represented by a single node as

shown in the following figure (Figure 3.6),

(BIRYChi 35)

(IRYChi 20)

Because It
1

(b 1) (i1

Figure 3.6 — Huffman Coding.

32

A Huffman code is generated for each symbol by attaching a binary digit to each branch.
This digit is formed by assigning the binary digit 1 to the left branches and the binary
digit O to the right branches. The code is generated by following the path of branches
from the top node to the symbol leaf node. For example for the phrase ‘Come on’ we get

the code 0001 as it is explained in the following table (Table 3.4).

Start Node Direction Stop Node Digit
(BIRYCbi 35) Left (IRYChi 20) 0
(IRYCbi 20) Left (YChi 8) 0
(YChi 8) Left (CBi 4) 0
(CBi 4) Right (C2 1

Table 3.4 — The Huffman technique.

A full table for each symbol is shown in the following table.

Phrase Symbol Freguency Code Length Code
Because B 1 5 00001
I'm I 6 3 011
Bad B 15 1 1
Come on C 2 4 0001
It I 1 5 00000
Really R 6 3 010
You know Y 4 3 001

Table 3.5 - Table of Huffman symbols.

33

To encode each symbol we just have to output its code word to the bit stream. Our coding

efficiency can be caculated by comparing the number of bits required to realize the

lyrics. For the Huffman code of our example, the bit lengthis,

15(1) + (6+6+4) 3 + (1+1)5 = 81 bits.

In comparison, for athree-bit code, the bit length would be,

(1+6+15+2+1+6+4) 3 = 105 bits.

While for an ideal 7-symbol code, the bit lengthis,

35 logy(7) = 98.3 hits.

As we can see the Huffman coder compresses the data by afactor of about 20 percent.

3.7 The Motion JPEG algorithm
The motion JPEG algorithm extends the standard JPEG idea to add the capability

of coding sequences of video frames. Motion JPEG initialy divides each frame into a

number of macroblocks. Each macroblock represents a 16 by 16 array of luminance
pixelsand 2, 8 by 8 arrays of chrominance in the frame (Figure 3.7 — 3.8).

Figure 3.7 — Composition of a macroblock.

35

16
16 sl O | 8| ¥
[] []
Y Cy C

Figure 3.8 — A macroblock arrangement.

3.8 Motion Estimation

The purpose of motion estimation is to determine which of the macroblocks in a

frame experienced motion. Motion estimation techniques fall into two categories:

1. Pixel by pixel motion estimation, called pixel-recursive algorithms (PRA).
2. Block by block motion estimation, called block-matching algorithms (BMA).

PRA techniques are giving the best results but they are rarely used because they are
inherently complex, and the motion estimation algorithms sometimes run into
convergence problems. As a compromise, BMA, even though not optimal, has been
widely used.

In the case of a Motion JPEG coder, in order to discover motion, the current
frame is compared with the previous frame. If there was some motion between the two
then the frame is set to INTER mode. In the case that there was no motion detected the
frameis set to INTRA. Obvioudly al the macroblocks of an INTRA frame are INTRA as
well. An INTER frame can contain both INTER and INTRA macroblocks. Motion

36

estimation decides in which macroblocks there was motion and sets them to INTER

mode for further encoding and in which there was no motion detected that will be set to

Motion Wector

Ti.ry »

Frevious Frame

Current Frame

Figure 3.9 — Motion Estimation.

INTRA mode. For every INTER macroblock the value of the motion vector has
to be determined. A motion vector is away to measure the displacement of an object in a

macroblock. The whole process can be seen in Figure 3.9.

37

Chapter 4 - Experimental Work

4.1 JPEG Optimization

4.1.1 JPEG Performance Analysis
The first am of the project was to identify parts of the JPEG code that could be

optimized. Code and algorithm optimization were both considered as ways of making

code faster with a parallel concern on keeping code size small. The first thing that was
examined was which parts of the JPEG algorithm are actually time-consuming as it is

these functions that the optimization should focus on. To determine this, profiling of the

code was performed using the standard “gprof’” UNIX tool for both the encoding and the
decoding parts of the algorithm. The first phase of profiling tested the encoding part of
the algorithm, by encoding a 600x399 image using the command line JPEG interpreter.
The 10 slowest functions encountered in the JPEG endoder are listed in table 4.1 while
the complete profiling results and explanations can be seen in Appendix A. On the top of

the list of the most time consuming functions is,

extern void ChenDct(int *, int *); /* Mdule: chendct.c */

This function is the Chen implementation of a forward discrete cosine transform (DCT).

38

% Time | Cumulative | Sdlf Calls Self Total Function
Seconds seconds ugcall | ug/call

28.75 0.23 0.23 5700 40.35 40.35 ChenDct

16.25 0.51 0.13 5700 22.81 22.81 Quantize

10.00 0.59 0.08 45200 | 1.77 1.77 ReadX Buffer

6.25 0.64 0.05 5700 8.77 8.77 EncodeAC

5.00 0.68 0.04 58253 | 0.69 0.69 EncodeHuffman

3.75 0.71 0.03 45600 | 0.66 0.66 ReadX Bound

3.75 0.74 0.03 5700 5.26 5.26 PreshiftDctMatrix

2.50 0.76 0.02 110801 | 0.18 0.18 meputv

1.25 0.77 0.01 5700 1.75 1.75 BoundDctMatrix

1.25 0.78 0.01 5700 1.75 21.05 ReadBlock

Table 4.1 — The 10 slowest functions of the JPEG Encoder.

This version of DCT was introduced in 1977 by Wen-Hsiung Chen, C. Harrison Smith
and S. C. Fralick and it is known as Fast Discrete Cosine Transform (FDCT). The FDCT
version of DCT uses matrices to obtain a 6 times better performance than the original
DCT.

Another two ‘slow’ functions follow closely the one just described,

extern void Quantize(int *, int *); /* Mdule: transformc
*/

static void ReadXBuffer(int, int *, BUFFER *); /* NMNodul e:
io.c */

39

Function ‘Quantize’ represents the quantization part of the algorithm as described in the
previous chapter. It quantizes an input matrix and puts the results in an output matrix.
‘ReadXBuffer’ on the other hand fetches elements from the buffer structure into storage.
This may actually amount to an arbitrary number of characters depending on the word
size.

For the decoding phase, table 4.2 shows the profiling results for the 10 slowest
functions encountered in the JPEG decoder, while a full listing can be seen in Appendix
B.

% Time | Cumulative | Self Calls Sdf Total Function
Seconds seconds ugcall | ug/call

30.00 0.24 0.24 5700 42.11 42.11 ChenlDct

7.50 0.48 0.06 5700 10.53 10.53 IQuantize

6.25 0.53 0.05 45600 1.10 2.19 WriteXBound

6.25 0.58 0.05 45200 1.11 1.11 WriteXBuffer

5.00 0.62 0.04 58128 0.69 1.08 DecodeHuffmahn

5.00 0.66 0.04 5700 7.02 7.02 IZigzagMatrix

5.00 0.70 0.04 5700 7.02 24.56 WriteBlock

3.75 0.73 0.03 51609| 0.58 0.72 megetv

2.50 0.75 0.02 46274 0.43 0.43 pgetc

2.50 0.77 0.02 5700 3.51 19.35 DecodeAC

Table 4.2 — The 10 slowest functions of the JPEG Decoder.

The most time consuming functions here are not surpassingly the inverse of the ones

found in the encoding part.

extern void ChenlDct(int *, int *); /* Mdule: chendct.c */

40

extern void | Quantize(int *, int *); /* Mdule: transformc
*/

static void WiteXBound(int, int *, BUFFER *); /* NModul e:
io.c */

Function ChenlDct implements the Chen (FDCT) inverse DCT. IQuantize takes an input
matrix, performs inverse quantization to it and puts the results in an output matrix.
WriteXBound writes an integer array input to the buffer. It also checks to see whether the
bounds of the image width are exceeded, and if so, the excess information isignored.
After the examination of both the JPEG code and search for available algorithms
that could bring further performance gains the above functions were found to have
reached very good levels of optimization, already. At this point the focus of the project
was turned on the implementation of a Motion JPEG module able of compressing

motion pictures, as an addition to the existing JPEG code.

4.2 The Motion JPEG Encoder

4.2.1 Addition of a Motion JPEG Encoder
In the beginning of the design, the standard JPEG code was modified to accept a

new parameter ‘m’ that indicates Motion JPEG mode of operation. In the main function

of the JPEG code a new parameter ‘m’ was added for this purpose. A parameter ‘e’

indicates encoding motion JPEG mode where a series of raw frames can be encoded into

Motion JPEG type files. The command line format is as given below,

j peg —me —iw Width —ih Height —in NumberOfFrames FrameList

41

After the ‘me’ parameter, indicating the Motion JPEG encoding mode the width and
height of the frames in the sequence has to be given. This is followed by the number of
frames in the sequence and the filenames of the frames used. An example of a typical

command line used is given below,

j peg —me —iw 48 —ih 64 —in 10 framel.raw frame2.raw frame3.raw
frame4.raw frame5.raw frame6.raw frame7.raw frame8.raw frame9.raw

framel0.raw

This command line will encode the 10 raw images, 48 pixels wide and 64 pixelsin height

into Motion JPEG type frames. The standard JPEG command line follows a very strict
approach on its command line input. At this stage many problems had to be overcomed in

order to guarantee the correctness of the input. The next step is to process the frames in

the command line one by one, starting by defining the macroblocks in the current frame.

The 10 frames of the ‘falling ball’ sequence, used for the whole coder can be seen in the

following figure (Figure 4.1).

O O O @) O
1 2 3 4 5
@] 8] o

& 8 9 10

Figure 4.1 — The ‘falling ball’ sequence.

42

4.2.2 Setting the Macroblocks
Each macroblock is taken as an array of 16 by 16 pixels of luminance values. The

number of macroblocks that can be fit in the full width and height of the frame is first
calculated. After that the initial frame coordinates of each macroblock are calculated and
the values of luminance in each of them are assigned. For the ‘falling ball’ sequence the

macroblocks are assigned as seen in the following figure (Figure 4.2).

0| 4 8 _
1 o 9
2 | 6 |10
3 | 7 | 1

Figure 4.2 — The assigned Macroblocks.

In macroblock 5 of frame 1 that contains the luminance values representing the ball the

following macroblock values are contained (Figure 4.3)

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 25L5 255 255 2G5 256 2GL 2GRL 2GL 2GL 258G 2GL 2G5 2G5L 2LE 258G
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 2G5 255 2G5 2GL5 2GE6 1] 0 0 1] 0 255 255 255 255 2GE
255 255 255 255 255 0192 192 192 192 192 0 255 255 255 255
255 255 255 255 0 192 192 192 192 192 192 192 0 255 255 255
255 255 255 0192 192 192 192 192 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 192 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 192 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 192 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 192 192 192 192 192 0 255 255
255 255 255 255 0192 192 192 192 192 192 192 0 255 255 255
255 255 255 255 255 0192 192 192 192 192 0 255 255 255 255
255 255 255 255 255 255 1] 0 0 1] 0 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 2G5

Figure 4.3 — The Luminance values in macroblock 5 of frame 1.

43

The luminance values have a range from 0 to 255 with zero representing black and 255

representing white pixels. All other values represent the different colors in between them.

The top-left and bottom-right frame coordinates assigned for the macroblocks of each

frame can be seenin Table 4.3.

M acr oblock Top-L eft Bottom-Right
0 (0,0) (15, 15)
1 (0, 16) (15, 31)
2 (0,32 (15, 47)
3 (0, 48) (15, 63)
4 (16, 0) (31, 15)
5 (16, 16) (31, 31)
6 (16, 32) (31, 47)
7 (16, 48) (31, 63)
8 (32,0 (47, 15)
9 (32, 16) (47, 31)
10 (32,32 (47, 47)
11 (32, 48) (47, 63)

Table 4.3 - Starting and Ending frame Coordinates of Macroblocks.

These macroblocks are the basic elements of the whole design and they are used

extensively throughout the coder. The next step in this stage is setting the search

windows.

4.2.3 Setting the Search Windows
A fundamental task of any video coder design is to detect motion between

subsequent frames. In the Motion JPEG coder implemented this is done on the basis of
macroblocks. For every macroblock in the current frame an area surrounding its
occurrence in the previous frame has to be searched for motion. This area is called a
search window. In the Motion JPEG coder designed the search windows cover an area of
amaximum of 48 x 48 pixels (Figure 4.4).

Search “Window

0 4 8 0 4 8
1 5 9 1 5 9

_’
2 B 10 2 B 10
3 7 11 3 7 11
Previous Frame Current Frame

Figure 4.4 — The Search Window of Macroblock 6.

A search window actually covers the area including the occurrence of the macroblock in
the previous frame and all its surrounding macroblocks. The frame coordinates of the

search window set for each macroblock are shown in the following table (Table 4.4).

Search Window | Top-Left Bottom-Right
0 (0,0) (31,31
1 (0, 0) (31, 47)
2 (0, 16) (31, 63)
3 (0, 32) (31, 63)
4 (0,0) (47, 31)
5 (0,0) (47, 47)
6 (0, 16) (47, 63)
7 (0, 32) (47, 63)
8 (16, 0) (47, 31)
9 (16, 0) (47, 47)
10 (16, 16) (47, 63)
11 (16, 32) (47, 63)

Table 4.4 — The Search Windows Coordinates in a frame.

45

Now that the macroblocks are assigned and the search window for each macroblock is set

the next step is performing motion estimation.

4.2.4 Motion Estimation

Motion estimation takes each macroblock of the current raw frame and searches

through its search window in the previous raw frame in order to detect motion. If motion

is detected in a macroblock then the macroblock is set to INTER mode, otherwise it is
INTRA. If aframe contains at least one INTER macroblock then the frame is INTER,

46

otherwise it is set to INTRA mode. In order to make an INTER or INTRA macroblock

decision anumber of parameters have to be calculated first.

The mean value of amacroblock is defined as,

16,16
% Z current E
=1,]=1

MBmean =
256

From this equation we can see that the mean value of a macroblock is the sum of al its
contained values divided by the total number of vaues in the macroblock. Having

calculated the mean value, the parameter A can be calculated as,

16,16

A= Z|current — MBmear)
i=1, =1

The motion estimation agorithm uses a shifting macroblock, which is placed in all
possible positions inside the search window. From the values of the current macroblock
and the shifting macroblock the Sum of Absolute Distortions (SAD) is calculated. SAD is

defined as,

16,16
SAD = Z|current—shift|
i=L]

i=L]=1
The value obtained from this equation is further reduced by 100 and SAD becomes,

SAD = SAD -100

a7

The agorithm scans the search window through all possible shifting macroblocks and
keeps the minimum value of SAD found. INTRA mode s finally choosen if,

A< (SAD —500)

If a macroblock is found to be INTER its motion vector is calculated as the difference of
the current macroblock top-left frame coordinates and the top-left frame coordinates of
the best matching macroblock. For the frame sequence used the algorithm produced the
following results (Table 4.5),

Current Frame INTER Macroblock Motion Vector
Framel.raw NONE NONE
Frame2.raw 5 (0,1
Frame3.raw 5 0,1
Framed.raw 5 ©, 2
6 0.2
Frameb.raw 5 ©, 3)
6 (0, 3)
Frame6.raw 5 0, 3)
6 0.3
Frame7.raw 6 O, 3)
Frame8.raw 6 O, 4)
Frame9.raw 6 0,1
FramelO.raw 6 0,1

Table 4.5 — Motion Vector Results.

The above results accurately describe the falling of the ball in each frame of the

sequence.

48

The next stages of the encoding process involve the encoding of the INTER macroblocks
found.

4.2.5 The Encoding Process
The first step of the encoding process is to construct the residual matrix. The

residual matrix for an INTER macroblock is defined as,

[0 0-bm(00) ol O)-bm{10) . cf15, 0)-bm(15,0) |
o0, 1)-br(@ 1) c{15, 1)~ bm(15, 1)
o0, 15)-bm(D, 15) .. {15, 15) - brm(15, 15)

In this matrix c(X, y) represents a vaue in the current INTER macroblock and bm(x, y)
represents a value in the best matching macroblock. Each element of the residual matrix
is the difference between the current macroblock value and the best matching macroblock
in the previous frame for the corresponding position. The vaues contained in the residual
matrix are processed through the Discrete Cosine Transform (DCT). The DCT agorithm
used in the Motion JPEG encoder uses the following equation,

15 15

DCTMatrix(u,v) = (1/ 4)C(u)C(v) Z Z RMatrix(i, j) cos((2i +1)urr/16)cos((2j +1)vrr/16)

Where,

/42 x=0 O

C(x) = O
otherwise[

49

The DCT Matrix obtained passes through the quantization process. Each value in the
DCT matrix isdivided by (2 * Q) where Q is the Quantization Factor. A small value of Q
allows better output quality to be obtained while a large value of Q will finally give
higher compression. Quantization is the irreversibly lossy part of the encoding process.
For the Motion JPEG encoder designed a value of 5 was assigned to Q, favouring better
quality. Figure 4.5 shows some typical results. In that figure we should notice the
appearance of many zeroes along with the concentration of the information energy away
from the center of the macroblock. The 2-dimensional quantization matrix is stored into a
1-dimensional array using the zig-zag technique. The zig-zag arranged values are now
ready for the run-length algorithm.

3 4 4 3 3 2 1 0 0 o -1 -2 -3 -3 -4 -4
4 b 5 5 4 3 2 1 o -1 -2 -3 -4 -5 -5 -pb
4 £ E 4 4 3 2 1 o -1 -2 -3 -4 -4 -5 £
3 5 4 4 3 2 2 1 o -1 -2 -2 -3 -4 -4 -5
3 4 4 3 3 2 1 0 0 g -1 -2 -3 -3 -4 -4
2 3 3 2 2 1 1 0 0 g -1 -1 -2 -2 -3 -3
1 2 2 2 1 1 1] 0 0 1] g -1 -1 -2 =2 =2
1] 1 1 1 0 0 1] 0 0 1] 0 0 g -1 -1 -1
1] 0 0 1] 0 0 1] 0 0 1] 0 0 1] 0 0 1]
g -1 -1 -1 0 0 1] 0 0 1] 0 0 1] 1 1 1
-1 -2 -2 -2 -1 -1 1] 0 0 1] 0 1 1 2 2 2
-2 -3 -3 -2 -2 -1 -1 0 0 1] 1 1 2 2 3 3
-3 -4 -4 -3 -3 -2 -1 0 0 1] 1 2 3 3 4 4
-3 -5 -4 -4 -3 -2 -2 -1 0 1 2 2 3 4 4 5
-4 -5 -5 -4 -4 -3 -2 -1 0 1 2 3 4 4 5 5
-4 -5 -5 -5% -4 -3 -2 -1 0 1 2 3 4 5 5 6

Figure 4.5 — Quantized values of Macroblock 5, Frame 2.

In the first stage of run length coding the values of the zig-zag array are scanned
and for each non-zero value found, the number of subsequent zeroes before it is recorded.
The number of zeroes counted represents the RUN parameter. The actua value of the
non-zero number represents the LEVEL parameter. A third parameter LAST indicates
whether the current number is the last value of the array. LAST is set to be 1 for the last
value and O for al the other values in the array. These parameters are used aong with the

Huffman Table to assign a proper codeword for each set of parameters. In that way run-

50

length coding achieves further compression by greatly reducing the number of values
required for the Motion JPEG output.

4.2.6 The Motion JPEG type Frames
At this point the encoding part is finished and what remains is to output the

information obtained to Motion JPEG type files. The encoder produces a sequence of
.mjg motion JPEG files. The first frame in the sequence is INTRA and the information of
al the INTRA macroblocks is stored in the output file. The INTER frames contain the
information of the encoded INTER macroblocks whole all their INTRA macroblocks are
taken by the decoder from their previous INTRA appearance in the sequence. The
following figure (Figure 4.6) displays the structure of information in an INTER frame.

51

IMTFA,
IMI IJI IPI IEI IGI Macrubluck
Header IMNTER
| Frame

a0 44 50 45 47 01 40 00 40 00 40 00 4D 00 40 00

40 01 00 o0 00 mo00 2A 00 ..

TTT‘TTT

[
Data (RUN, LEVEL, LAST) ...

hotion Wectar

'Sign of %' %' 'Sign of ¥ ™"
INTER
FMacroblock

Figure 4.6 — Initial segment of Information stored in Frame2.mjg.

The following table (Table 4.6) shows the concstructed motion JPEG type file and their

Size.

Frame Filename Size (Bytes)
Framel.mjg 3102
Frame2.mjg 601
Frame3.mjg 601
Frame4.mjg 1298
Frameb.mjg 1160
Frame6.mjg 1130
Frame7.mjg 673
Frame8.mjg 613
Frame9.mjg 601
Framel0.mjg 589

Table 4.6 — The constructed Motion JPEG frames.

52

Every frame of the raw sequence is 3072 bytes in size and the size of the whole 10 frame
raw sequence is 30720 bytes. The size of the 10 frame motion JPEG sequence is 10368
bytes which means a significant amount compression was achieved and the resulting

sequence is about athird of the size of the original.

4.3 The Motion JPEG Decoder

4.3.1 Addition of a Motion JPEG Decoder
In the beginning of the motion JPEG decode design a new parameter ‘d’ was

added to the standard motion JPEG mode parameter ‘m’. In this mode a series of motion

JPEG frames can be decoded to raw frames. The command line format is as given below,

j peg —md —iw Width —ih Height —in NumberOfFrames FrameList

After the ‘md’ parameter, indicating the Motion JPEG decoding mode the width and
height of the frames in the sequence has to be given. This is followed by the number of
frames in the sequence and the filenames of the frames used. An example of a typical

command line used is given below,

j peg —-md —iw 48 —ih 64 —in 10 framel.mjg frame2.mjg frame3.mjg
frame4.mjg frame5.mjg frame6.mjg frame7.mjg frame8.mjg frame9.mjg

frame10.mjg

53

This command line will decode the 10 motion JPEG frames, 48 pixels wide and 64 pixels
in height into raw frames. The next step is to process the frames given in the command
line one by one, starting by setting the ‘Virtual’ frame.

4.3.2 The ldea of a Virtual Frame
A virtual frame contains all the raw information needed by the decoder to

reconstruct the current frame. The first frame of the motion JPEG sequence is always
INTRA. The decoder initially reads the information contained in the first frame and
transforms the macroblock structured information into raw information. This information

is stored in the current virtual frame. When the decoder needs to process an INTER frame
it decodes the information contained in the INTER macroblocks and then updates the
virtual frame with the current changes in raw information. The virtual frame solves the
problem of having to look for changes in all the previous frames, for INTRA information
not included in the current frame. It also simplifies the whole design as for every current
frame decoded, the decoder only has to output the updated information of the virtual

frame.

4.3.3 The Decoding Process
Through the decoding process all frames in the sequence are decoded one by one.

When the decoder reaches an INTER frame it searches for all INTER macroblocks and
gathers all the information left for them by the encoder. This information includes the
motion vector of the macroblock and the encoded data.

The first step is to pass the encoded information of the macroblock throught the
inverse run-length coding. The inverse run-length algorithm searches through the
Huffman table (borrowed from H.263) to find a combination of RUN, LEVEL and LAST

parameters that matches the current code word. In that way all the code words in the

54

macroblock are assigned a set of RUN, LEVEL and LAST parameters. From the RUN
parameter the number of zeroes proceeding the non-zero LEVEL vaue are set, and the
whole process repeats until the LEVEL value having a LAST parameter equal to 1 is
reached. In that way the quantized values in the macroblock are restored.

These values are stored in a 1-Dimensiona array and they have to be rearranged
in a 2-Dimensinal matrix using the inverse zig-zag technique. The inverse zig-zag
algorithm uses an index to rearrange the information in a 16 by 16 matrix.

The matrix obtained is now processed through an inverse quantization agorithm
where all its values are multiplied by (2*Q) where Q is the Quantization Factor. The
output matrix is now ready for the Inverse Discrete Cosine Transform (IDCT). The
equation used by the IDCT is,

15 15

IDCTMatrix(i, j) =1/ 4)2) C(u)C(v)iRMatrix(u,v) cos((2i +)urr/16)cos((2] +1)vrr/16)

Where again,

/42 x=0 U
C(¥ =g V2 O
1 otherwiser

The values obtained are the values of the inverse residual matrix. Using the motion vector
of the macroblock we can obtain the values of the best matching macroblock. These
values along with the values in the inverse residual matrix can finally give raw data using

the following transform,

ir(0, 0 + bm(0,0) i1, 0)+bm{1,0) .. ir(15, 0) + bm(15, 0]

0, 1)+ bmi0, 1) . . ir(15, 1) + bm(15, 1]

ir(0, 15) + bra(0, 15) ir(15, 15) + brn(15, 15)

55

In this matrix raw data are obtained by addition of each vaue ir(x, y) in the inverse
residual matrix with each value bm(x, y) in the best matching macroblock. For each raw
macroblock vaue, its correct position in the raw frame must now be found. Each value is
set in the appropriate position in the virtual frame which is now updated to reflect the

current changes.

4.3.4 The Decoded Raw Frames
For every current motion JPEG frame decoded the virtual frame is updated before

the values are placed in a raw frame. All 10 frames in the sequence where decoded
successfully giving raw (.ra0) files of 3072 bytes in size. The following figure (Figure
4.7) shows the differences in information from a portion of the origina raw image and

the decoded raw image as taken from macroblock 5 of frame 2.

56

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 5L 255 2056 2GL 2G5 255 25L 255 ZGEL 2G5 25L 2GE 2EE
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 25L5 255 255 2L 205G 2GL 285 255 2GL 205 2G5L 2G5 2G5L 2GL 2EE
255 255 255 255 255 255 0 1] 0 0 0 255 255 255 255 255
255 2G5 255 2G5 2GE 0192 192 192 192 192 0 255 255 2LE5 2EE
255 255 255 255 0192 192 192 192 192 192 132 0 255 255 255
255 255 2E% 0192 192 192 192 192 192 192 192 192 0 255 2EE
255 255 255 0192 192 192 192 132 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 132 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 132 192 192 192 192 0 255 255
255 255 255 0192 192 192 192 1932 192 192 192 192 0 255 255
255 255 255 255 0192 192 192 192 192 192 192 0 255 255 255
255 255 255 255 255 0192 192 1932 192 192 0 255 255 255 255
255 255 255 255 255 255 0 1] 0 0 0 255 255 255 255 25%
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 244 246 254 255 255 249 255 255 249 255 Z55 254 246 244 255
255 255 255 255 255 232 255 235 235 255 232 255 255 255 255 255
255 255 255 5L 2GL5 200 2G4 239 239 254 255 ZEL 2G5 255 2GE 2EE
255 241 255 255 255 237 253 255 255 253 237 255 255 255 241 255
231 255 255 255 235 2GG6 0 1] 0 0 1 235 255 255 255 231
255 255 251 235 255 20 171 206 206 171 212 42 235 251 255 255
255 25E5 255 GG 0 166 205 211 211 205 166 174 19 255 25E5 2EE
236 255 255 3 186 131 190 131 181 190 181 1486 195 22 255 236
236 255 2E% 3 186 181 190 181 121 190 181 186 195 22 255 236
255 255 255 19 174 166 205 211 211 205 166 174 211 2 255 255
255 255 251 0 234 212 171 206 206 171 212 234 172 0 255 255
231 255 255 12 172 193 177 179 179 177 193 172 204 g 255 231
255 241 255 255 9174 190 224 224 190 174 201 20 255 241 255
255 255 255 255 255 19 191 176 176 191 211 1 255 255 255 255
255 255 255 255 255 232 36 1] 0 36 0 255 255 255 255 255
255 244 246 254 255 255 249 255 255 249 255 255 254 246 244 255

Figure 4.7 - Differences of Information in the macroblock 5 area between the

original frame2.raw (Top) and the decoded frame2.ra0 (Bottom).

A comparison between an original raw and decoded raw frame in the sequence can be

seen in the following figure (Figure 4.8),

S7

Figure 4.8 — The original raw Frame2.raw (Left) and the decoded raw Frame2.ra0 (Right).

The peak signal to noise ratio (PSNR) was also calculated for the decoded frames of the

sequence and the results can be seen in the following table (Table 4.7).

Frame PSNR (dB)
Framel.ra0 -
Frame2.ra0 50.580
Frame3.ra0 48.179
Frame4.ra0 41.729
Frame5.ra0 40.331
Frame6.ra0 39.630
Frame7.ra0 38.376
Frame8.ra0 37.847
Frame9.ra0 37.860
Framel0.ra0 37.932

Table 4.7 — The PSNR of the frames in the sequence.

58

The total decrease in the value of PSNR reflects the increase of the noise in the signal, as

the frames in the sequence are subsequently decoded.

59

Chapter 5 - Conclusions

5.1 Project Discussion and Conclusions

5.1.1 JPEG Performance
The JPEG image compression format provides the most efficient image

compression standard available today. It is a well designed product of the collaboration

between many researchers, for many years. The standard JPEG code written in C has

been refined and optimized many times both before a finallized JPEG standard was

defined as well as in later times. The technique achieves its results based on a number of
fundamental and universal mathematical algorithms that are now considered as classics.

Such an algorithm is the Discrete Cosine Transformation (DCT) of numbers, which can

be found in the heart of the JPEG design. The DCT algorithm in its simplest form can be

still found in many hardware JPEG implementations offering good performance and low
manufacturing costs. As computers become more powerful and communications
requirements more demanding, a need appears for the ultimate in terms of speed of
execution of a software or hardware component. Since the DCT algorithm is the most
time-consuming function in a typical JPEG design many ‘Fast’ DCT (FDCT) algorithms
were invented throught the years in order to perform this task as fast as possible. In the
standard JPEG C code used, the DCT process is implemented using the Chen, Smith and
Frallick version of FDCT. Thorough study of this algorithm and its C code
implementation revealed two of its most important qualities. At first the algorithm
offered very fast execution times that outperform other FDCTSs. In fact the algorithm is

documented to be ‘6’ times faster than the simple DCT. The second characteristic is that

60

the algorithm enables simplicity in software implementation. This property doesn’t give
much space for anyone to consider code optimization as a way of making the algorithm
faster. In general, the whole JPEG design was found to be a stable and mature product
with obvious signs of the tremendous amount of work being done in almost every part of

its implementation.

5.1.2 Motion JPEG for Video Compression
The JPEG standard offers high levels of compression for still images while

retaining good image quality. A Motion JPEG addition exploits the basic ideas of video
coding to give JPEG the cababililty of handling video sequences. Today with the
expansion of multimedia applications there is a lot of market space for Motion JPEG and
in that sense it is a pity that it is not yet standardized. Still, a large number of both
software and hardware Motion JPEG implementations can be found today, but due to
lack of standardization these are not compatible across different vendors. Compared to
other video compression techniques such as MPEG, motion JPEG doesn’t support sound
and achieves significally lower compression levels. Motion JPEG on the other hand has
the advantage of allowing easy editing of the frames in a video sequence even with single
frame precision. In most cases today, a video sequence recorded will be first converted
into Motion JPEG format, then it will be edited and finally it will be again converted to a

more efficient video compression format, such as MPEG-2, for storage or transmission.

5.1.3 The Motion JPEG Encoder Design
The Motion JPEG encoder designed provides an extension to the standard JPEG

for converting raw video frames to compressed Motion JPEG type frames. The command
line input can accept an unlimited number of frames of a video sequence. Video coding

techniques such as motion estimation were used to detect motion between subsequent

61

frames. The information contained in the macroblocks that motion was detected is
encoded and contained in the output motion JPEG frame. For the macroblocks where no
motion was detected, the encoder sends an output that directs the decoder to obtain their
information from a previous frame in the sequence. In that way high levels of
compression are achieved. For the sequence used, the total size of the resulting motion
JPEG sequence was 1/3 of the total size of the original raw sequence. The encoder
implemented provides the decoder with information, sufficient for good quality
reconstruction of the frame. This quality can be further improved if in the encoder the

current raw frame is compared with the previous reconstructed frame.

5.1.4 The Motion JPEG Decoder Design
Through the Motion JPEG decoder, the motion JPEG files produced by the

encoder can be successfully converter back to raw format. The decoder completes the
whole design as a transmitter can convert a raw sequence to Motion JPEG sequence and
transmit the sequence which will be decoded at the receiver to the original raw format.
This of course implies some loss of quality in the frames but the reduction in size means
faster transmission and thus reduced transmission costs. The decoder implementation
uses the idea of avirtual frame, which constantly keeps updated raw frame information as
the decoding progresses. The total decrease of the PSNR value obtained after decoding
the whole sequence reflects the build-up of noise. The motion JPEG sequence used was

successfully decoded into raw frames of acceptable quality.

References

* K.R. Rao,J J Hwang
Techniques & Standards for Image - Video & Audio Coding
Prentice Hall PTR, 1996

* W. B. Pennebaker, J. L. Mitchell
JPEG Still Image Data Compression Standard
International Thomson Publishing, 1993

* J L. Mitchell, W. B. Pennebaker, C. E. Fogg, D. J. LeGall
MPEG Video Compression Standard
Chapman & Hall, 1997

* A.C. Luther
Principles of Digital Audio and Video
Artech House Publishers, 1997

* W.Kou
Digital Image Compression Algorithms and Standards
Kluwer Academic Publishers, 1995

* V. Bhaskaran, K. Konstantinides
Image and Video Compression Standards, Second Edition
Kluwer Academic Publishers, 1997

* E.R. Dougherty, P. A. Laplante
Introduction to Real-Time Imaging
|EEE Press, 1995

* B. G. Haskdl, A. Puri, Arun Netravali
Digita Video: An Introduction to MPEG-2
Chapman & Hall, 1997

Appendix A — Encoder Profiling Results

%

cunul ati ve

seconds

sel f

seconds

calls

sel f

ns/ cal |

Tot al
ns/ cal

nanme

t he percentage of the total running tine of the
program used by this function.

a running sum of the nunber of seconds accounted

for by this function and those |isted above it.

t he nunber of seconds accounted for by this
function alone. This is the major sort for this
listing.

the nunber of times this function was invoked, if
this function is profiled, else blank.

the average nunber of nilliseconds spent in this
function per call, if this function is profiled,

el se bl ank.

the average nunber of nilliseconds spent in this
function and its descendents per call, if this
function is profiled, else blank.

the nane of the function. This is the minor sort
for this listing. The index shows the | ocation of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in

the gprof listing if it were to be printed.

Flat profile:

Each sanple counts as 0.01 seconds.

% cunul ati ve sel f sel f tota

tinme seconds seconds calls wus/call us/call nane

63

e e s
O o o ™

© 0O 0000000000000 O00 00000000 REEREEREN®®OO

.75
.75
. 25
. 00
. 25
. 00

75
75
50
25
25
25
25
00
00
00
00
00
00
00
00
00

. 00

00

. 00
. 00
. 00
. 00
. 00

00
00
00
00
00
00
00

. 00
. 00

O 0O 0000000000000 000000000O000000000 000 0o

.23
. 38

51
59
64
68
71
74
76
77
78
79
80
80
80
80
80
80
80
80
80
80

. 80

80

. 80
. 80
. 80
. 80
. 80

80
80
80
80
80
80
80

. 80
. 80

O 0O 0000000000000 000000000000000000 000 0o

.23

15
13
08
05
04
03
03

01
01
01
01
00
00
00
00
00
00
00
00
00

. 00

00

. 00
. 00
.00
.00
. 00

00
00
00
00
00
00
00

. 00
. 00

5700

5700
45200
5700
58253
45600
5700
110801
5700
5700
5700
1
35174
5701
5701
5700
2857
2850
2000
334
82

75

70

70

42

32

=
~

N N DN W W &~ 00O 00 0

N
o

N
N

P P P O U OO ®

©O 0O 0000000000000 O0000O0O00O0O0o0

.35

.81
.77
.77

69
66
26
18

.75
.75
.75
10000.
.00
. 00
.00

00

00
00
00
00
00
00

.00

00

.00
.00
.00
.00
.00

00
00
00
00
00
00
00

.00
.00

40.

22.
.77
18.
.87
.41

P O o N O

©O 0O 0000000000000 O0O00O0O0O0R OO0

35

81

25

26
18

.75
21.
1
650000. 00
0.
.00
.00
.05

05
75

00

00
00
00
00
00

.00

00

.00
.00
.00
.00
.00

00
00
00
00
00
00
00

.00
.00

ChenDct
ncount
Quanti ze
ReadXBuf f er
EncodeAC
EncodeHuf f man
ReadXBound

PreshiftDct Matri x

meput v

BoundDct Mat ri x

ReadBl ock
Zi gzaghatri x

JpegEncodeScan

bput ¢
UseACHuUf f man
UseDCHuf f man
EncodeDC
Installlob

Install Prediction
ReadResi zeBuf f er

yyl ook

yyl ex

Bl ockMbveTo
enter
hashpj w
MakeLi nk
MakeXBuf f er
getint
maseek

mt el |
swbyt eal i gn
getstr

Cl osel ob
Rewi ndl ob
CodeTabl e
MakeEhuf f
MakeXhuf f
Or der Codes

0. 00 0. 80
0. 00 0. 80
0. 00 0. 80
0. 00 0. 80
0. 00 0. 80
0. 00 0. 80
0. 00 0. 80
ear Fr ameFr equency
0. 00 0. 80
0. 00 0. 80

MakeConsi st ent Fr aneS

0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
0.00 0. 80
Cal

0.
0.

O O O 0o o o O

© 0O 0 0000000000000 O0O0O0 0o

graph (explanation

. 00 2 0. 00
. 00 2 0.00
00 2 0. 00
00 1 0. 00
00 1 0.00
. 00 1 0. 00
. 00 1 0. 00
00 1 0.00
00 0.00
ze
. 00 1 0. 00
. 00 1 0. 00
00 1 0. 00
00 1 0. 00
00 1 0. 00
00 1 0. 00
00 1 0. 00
00 1 0.00
00 1 0.00
00 1 0.00
. 00 1 0. 00
00 1 0.00
. 00 1 0. 00
. 00 1 0. 00
.00 1 0. 00
.00 1 0. 00
. 00 1 0.00
00 1 0.00
00 1 0.00
. 00 1 0.00
. 00 1 0.00

o

O O O 0o o o O

.00
.00

00
00
00

.00
.00

.00

0.00

fol | ows)

© 0000000000000 O0

.00
.00

00
00
00
00
00
00
00
00

.00

00

.00
.00
.00
0.
650000. 00
0.
0.
650000. 00
0.

00

00
00

00

65

Si zeTabl e
Speci fi edHuf f man
Wit eHuf f man
CheckBasel i ne
CheckScan
CheckVal idity

ConfirnfFil eSi ze

MakeFr ame
Makel mage
Makel ob
MakeScan
MakeScanFr equency
Reset Codec
Set ACHuf f man
Set DCHuf f man
Wit eDht
Wit eDnl
Wit eDqt
Wit eEoi
Wit eSof
Wit eSoi
Wit eSos
i nitparser
mai n
macl ose
maopen
par ser
pushst r eam

66

granul arity: each sanple hit covers 4 byte(s) for 1.54% of 0.65
seconds

This table describes the call tree of the program and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of several lines. The line with the
i ndex nunber at the left hand margin lists the current function.
The lines above it list the functions that called this function
and the lines belowit list the functions this one called.
This line lists:
index A unique nunber given to each elenment of the table.
I ndex nunbers are sorted numerically.
The index nunber is printed next to every function nane so

it is easier to | ook up where the function in the table.

%tinme This is the percentage of the ‘total’ tine that was spent
in this function and its children. Note that due to
di fferent viewpoints, functions excluded by options, etc,
these nunbers will NOT add up to 100%

sel f This is the total amount of tine spent in this function.

chil dren This is the total amount of tinme propagated into this
function by its children.

called This is the nunber of times the function was call ed.
If the function called itself recursively, the nunber
only includes non-recursive calls, and is followed by
a ‘+ and the nunber of recursive calls.

name The nanme of the current function. The index nunber is
printed after it. |If the function is a nmenber of a
cycle, the cycle nunber is printed between the
function’s nanme and the index number.

For the function's parents, the fields have the foll owi ng neani ngs:

sel f This is the anobunt of tine that was propagated directly
fromthe function into this parent.

chil dren This is the amount of tine that was propagated from

the function’s children into this parent.

called This is the nunber of tinmes this parent called the
function ‘/’ the total nunmber of tinmes the function
was called. Recursive calls to the function are not
i ncluded in the nunmber after the */’.

name This is the name of the parent. The parent’s index
nunber is printed after it. |If the parent is a
nenber of a cycle, the cycle nunber is printed between
the nane and the index nunber.

If the parents of the function cannot be determ ned, the word
‘<spontaneous>’ is printed in the "name" field, and all the other
fields are blank.

For the function's children, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the child into the function.

children This is the amount of time that was propagated from
the child's children to the function.

called This is the number of times the function called
this child /' the total number of times the child
was called. Recursive calls by the child are not
listed in the number after the */'.

name This is the name of the child. The child's index
number is printed after it. If the child is a
member of a cycle, the cycle number is printed
between the name and the index number.

If there are any cycles (circles)

entry for the cycl e-as-a-whole

in the call

68

graph, there is an

This entry shows who called the

cycle (as parents) and the nenbers of the cycle (as children.)

The ‘+ recursive calls entry shows the nunber of function calls that

were internal to the cycle,

and the calls entry for each nenber shows,

for that nenber, how nany tinmes it was called from other nenbers of

t he cycle.

index %tine sel f
.01
.01
.23
.13
.01
.05
.03
.01
01
.00
00
00
00
00
00
.00
.00

[1] 100.0

[47]
0. 00
0. 00

~
=
o
©
o
o
o
o

© 000000000000 o0 oo

children
0.

64
64
00
00
11
05
00
00
00
01
00
00
00
00
00
00
00

0. 00
0. 00

cal l ed

1/1

1
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5700
5700/ 5701
5700/ 5701
2854/ 2857
2850/ 2850

3/3

171

171

1/1
1/1
1/1

parser [3]
JpegEncodeScan [1]
ChenDct [5]

Quanti ze [6]

ReadBl ock [7]
EncodeAC [9]

Preshi ftDctMatrix [12]
BoundDct Matri x [14]
Zigzaghatrix [15]
EncodeDC [16]
UseDCHuf f man [19]
UseACHuUf f man [18]
Installlob [20]
Install Prediction [21]
Rewi ndl ob [36]
CheckScan [45]

Cl ear Fr aneFr equency

Reset Codec [55]
WiteSos [64]
WiteDnl [59]

_start [4]

mai n [2]

© 00 0 0 0000000 o000 0o
o
S

0. 00
MakeConsi st ent Fr aneSi ze

0. 00
.00
.00
.00
00
.00
.00

B
=
o
©
o
o
o
o

1/1
61/ 82
17/ 17

4/ 4

3/ 2857

3/3

2/ 2

2/ 2

2/ 2

171

1/1

171

171

1/1

1/1

1/1

1/1
1/1
1/1
1/1
1/1
1/1
1/1

5700/ 5700

69

parser [3]
Makel mage [51]
MakeFranme [50]
MakeScan [53]

i nitparser [65]

mai n [2]

parser [3]
JpegEncodeScan [1]
yyl ex [24]

getint [30]

getstr [34]
Installlob [20]

Cl osel ob [35]
MakeXhuf f [39]
MakeEhuf f [38]
Speci fi edHuf f man [42]
CheckVal idity [46]
CheckBasel i ne [44]
ConfirnFil eSize [48]
Makel ob [52]

mwopen [67]

macl ose [66]

WiteSof [62]
WiteSoi [63]
WiteEoi [61]
WiteDgt [60]
WiteDht [58]
Set ACHuf f man [56]
Set DCHuf f man [57]

<spont aneous>
_start [4]

mai n [2]

JpegEncodeScan [1]

[7] 18.

[8] 16.

[9] 16.

[10] 12.

5700/ 5700
5700

5700/ 5700
5700
45600/ 45600
75/ 75

45600/ 45600
45600
45200/ 45200

5700/ 5700
5700
52553/ 58253
46848/ 110801

45200/ 45200
45200
2000/ 2000

5700/ 58253
52553/ 58253
58253
58253/ 110801

5700/ 5700
5700

5700/ 110801
46848/ 110801
58253/ 110801

110801
34841/ 35174

5700/ 5700

70

ChenDct [5]

JpegEncodeScan [1]
Quanti ze [6]

JpegEncodeScan [1]
ReadBl ock [7]
ReadXBound [8]

Bl ockMoveTo [25]

ReadBl ock [7]
ReadXBound [8]
ReadXBuf f er [10]

JpegEncodeScan [1]
EncodeAC [9]
EncodeHuf f man [11]
meputv [13]

ReadXBound [8]
ReadXBuf fer [10]
ReadResi zeBuf fer [22]

EncodeDC [16]
EncodeAC [9]
EncodeHuf fman [11]
neputv [13]

JpegEncodeScan [1]
PreshiftDct Matrix [12]

EncodeDC [16]
EncodeAC [9]
EncodeHuf f man [11]
neputv [13]

bputc [17]

JpegEncodeScan [1]

00

5700/ 5700
5700

5700/ 5700
5700
5700/ 58253

5700/ 110801

1/ 35174
2/ 35174
2/ 35174
6/ 35174
8/ 35174
16/ 35174
21/ 35174
71/ 35174
206/ 35174

34841/ 35174
35174

1/ 5701
5700/ 5701
5701

1/ 5701
5700/ 5701
5701

3/ 2857

2854/ 2857

2857

2850/ 2850
2850

2000/ 2000

71

BoundDct Matri x [14]

JpegEncodeScan [1]
Zigzaghatrix [15]

JpegEncodeScan [1]
EncodeDC [16]
EncodeHuf f man [11]
meputv [13]

swbyt eal i gn [33]
WiteSoi [63]
WiteEoi [61]
WiteDnl [59]
WiteDht [58]
WiteSos [64]
WiteSof [62]
WiteDgt [60]
Wit eHuf f man [43]
meputv [13]
bputc [17]

WiteDht [58]
JpegEncodeScan [1]
UseACHuUf f man [18]

WiteDht [58]
JpegEncodeScan [1]
UseDCHuf f man [19]

parser [3]
JpegEncodeScan [1]

Installlob [20]

JpegEncodeScan [1]
Install Prediction [21]

ReadXBuf f er [10]

[22] 0.0 0.00 0.00 2000 ReadResi zeBuf fer [22]

0. 00 0. 00 334/ 334 yyl ex [24]

[23] 0.0 0. 00 0. 00 334 yyl ook [23]
0. 00 0. 00 4/ 82 getstr [34]
0. 00 0. 00 17/ 82 getint [30]
0. 00 0. 00 61/ 82 parser [3]

[24] 0.0 0.00 0. 00 82 yyl ex [24]
0.00 0. 00 334/ 334 yyl ook [23]
0. 00 0. 00 28/ 70 enter [26]
0. 00 0. 00 75/ 75 ReadBl ock [7]

[25] 0.0 0. 00 0. 00 75 Bl ockMoveTo [25]
0. 00 0. 00 28/ 70 yyl ex [24]
0. 00 0. 00 42/ 70 i nitparser [65]

[26] 0.0 0.00 0. 00 70 enter [26]
0. 00 0. 00 70/ 70 hashpj w [27]
0.00 0. 00 42/ 42 MakeLi nk [28]
0.00 0. 00 70/ 70 enter [26]

[27] 0.0 0. 00 0. 00 70 hashpj w [27]
0.00 0. 00 42/ 42 enter [26]

[28] 0.0 0. 00 0. 00 42 MakeLi nk [28]
0. 00 0. 00 32/ 32 Makel ob [52]

[29] 0.0 0. 00 0. 00 32 MakeXBuf f er [29]
0. 00 0. 00 17/ 17 parser [3]

[30] 0.0 0.00 0. 00 17 getint [30]
0.00 0. 00 17/ 82 yyl ex [24]
0. 00 0. 00 2/ 8 WiteSof [62]
0.00 0. 00 2/ 8 WiteDgt [60]
0.00 0. 00 2/ 8 WiteSos [64]
0. 00 0. 00 2/ 8 WiteDht [58]

[31] 0.0 0.00 0.00 8
0.00 0.00 2/ 8
0.00 0.00 2/ 8
0.00 0.00 2/ 8
0.00 0.00 2/ 8
[32] 0.0 0.00 0.00 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
0.00 0.00 1/ 8
[33] 0.0 0.00 0.00 8
0.00 0.00 1/ 35174
00 . 00 4/ 4
[34] 0.0 00 00 4
00 . 00 4/ 82
00 . 00 3/ 3
[35] 0.0 00 00 3
00 00 3/ 3
[36] 0.0 00 00 3
00 . 00 2/2
[37] 0.0 00 00 2
00 . 00 2/2
[38] 0.0 00 00 2
00 . 00 2/ 2

mseek [31]

WiteSof [62]
WiteDgt [60]
WiteSos [64]
WiteDht [58]
mat el | [32]

WiteSoi [63]
WiteEoi [61]
WiteSof [62]
WiteDnl [59]
WiteDgt [60]
WiteSos [64]
WiteDht [58]
macl ose [66]
swbyt eal i gn [33]
bputc [17]

parser [3]
getstr [34]
yyl ex [24]

parser [3]
Cl osel ob [35]

JpegEncodeScan [1]
Rewi ndl ob [36]

Speci fi edHuf f man [42]
CodeTabl e [37]

parser [3]
MakeEhuff [38]

parser [3]
MakeXhuff [39]

73

[49]
MakeConsi

0.0

.00

Speci fi edHuf f man [42]
Or der Codes [40]

Speci fi edHuf f man [42]
Si zeTabl e [41]

parser [3]
Speci fi edHuf f man [42]
Si zeTabl e [41]
CodeTabl e [37]

Or der Codes [40]

WiteDht [58]
Wit eHuf f man [43]

bputc [17]

parser [3]
CheckBasel i ne [44]

JpegEncodeScan [1]
CheckScan [45]

parser [3]
CheckVal idity [46]

JpegEncodeScan [1]

Cl ear Fr aneFr equency

parser [3]
ConfirnFil eSize [48]

parser [3]

mai n [2]
MakeFranme [50]

75

0.00 0. 00 171 mai n [2]
[51] 0.0 0. 00 0. 00 1 Makel mage [51]
0. 00 0. 00 1/1 parser [3]
[52] 0.0 0. 00 0. 00 1 Makel ob [52]
0. 00 0. 00 32/ 32 MakeXBuf f er [29]
0.00 0. 00 171 mai n [2]
[53] 0.0 0.00 0. 00 1 MakeScan [53]
0. 00 0. 00 1/1 MakeScanFr equency [54]
0. 00 0. 00 1/1 MakeScan [53]
[54] 0.0 0. 00 0. 00 1 MakeScanFr equency [54]
0. 00 0. 00 1/1 JpegEncodeScan [1]
[55] 0.0 0. 00 0. 00 1 Reset Codec [55]
0. 00 0. 00 1/1 parser [3]
[56] 0.0 0.00 0. 00 1 Set ACHuf f man [56]
0. 00 0. 00 1/1 parser [3]
[57] 0.0 0. 00 0. 00 1 Set DCHuf f man [57]
0.00 0. 00 1/1 parser [3]
[58] 0.0 0. 00 0. 00 1 WiteDht [58]
0. 00 0. 00 8/ 35174 bputc [17]
0. 00 0. 00 2/ 8 mat el | [32]
0. 00 0. 00 2/ 2 Wit eHuf f man [43]
0.00 0. 00 2/8 maseek [31]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0.00 0. 00 1/ 5701 UseDCHuf f man [19]
0.00 0. 00 1/ 5701 UseACHuf f man [18]
0. 00 0. 00 1/1 JpegEncodeScan [1]
[59] 0.0 0.00 0. 00 1 WiteDnl [59]
0.00 0. 00 6/ 35174 bputc [17]
0. 00 0. 00 1/8 swbyt eal i gn [33]

0. 00 0. 00 1/1 parser [3]
[60] 0.0 0. 00 0. 00 1 WiteDgt [60]
0.00 0. 00 71/ 35174 bputc [17]
0.00 0. 00 2/ 8 mat el | [32]
0. 00 0. 00 2/ 8 mwseek [31]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0. 00 0. 00 1/1 parser [3]
[61] 0.0 0.00 0. 00 1 WiteEoi [61]
0. 00 0. 00 2/ 35174 bputc [17]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0. 00 0. 00 1/1 parser [3]
[62] 0.0 0. 00 0. 00 1 WiteSof [62]
0. 00 0. 00 21/ 35174 bputc [17]
0. 00 0. 00 2/ 8 mat el | [32]
0.00 0. 00 2/ 8 mwseek [31]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0. 00 0. 00 1/1 parser [3]
[63] 0.0 0.00 0. 00 1 WiteSoi [63]
0. 00 0. 00 2/ 35174 bputc [17]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0. 00 0. 00 1/1 JpegEncodeScan [1]
[64] 0.0 0. 00 0. 00 1 WiteSos [64]
0. 00 0. 00 16/ 35174 bputc [17]
0. 00 0. 00 2/ 8 mat el | [32]
0.00 0. 00 2/ 8 mwseek [31]
0. 00 0. 00 1/8 swbyt eal i gn [33]
0.00 0. 00 1/1 mai n [2]
[65] 0.0 0. 00 0. 00 1 i nitparser [65]
0. 00 0. 00 42/ 70 enter [26]
0. 00 0. 00 1/1 parser [3]

[66] 0.0 0. 00 0. 00 1 macl ose [66]

77

0. 00 .00 1/8 swbyt eal i gn [33]
.00 .00 1/1 parser [3]
[67] 0.0 0. 00 .00 1 mwopen [67]
.00 .00 1/1 pushst ream [68]
.00 .00 1/1 mwvopen [67]
[68] 0.0 0. 00 .00 1 pushst ream [68]
I ndex by function nane
[25] Bl ockMoveTo [54] MakeScanFrequency [62] Wit eSof
[14] BoundDct Matri x [29] MakeXBuf f er [63] WiteSoi
[44] CheckBaseline [39] MakeXhuf f [64] WiteSos
[45] CheckScan [40] O der Codes [15]
Zi gzaghatri x
[46] CheckValidity [12] PreshiftDctMatrix [17] bputc
[5] ChenDct [6] Quanti ze [26] enter
[47] d earFraneFrequency [7] ReadBl ock [30] getint
[35] C osel ob [22] ReadResi zeBuffer [34] getstr
[37] CodeTabl e [8] ReadXBound [27] hashpjw
[48] ConfirntFileSize [10] ReadXBuf f er [65]
i nitparser
[9] EncodeAC [55] Reset Codec [2] main
[16] EncodeDC [36] Rewi ndl ob (166) ntount
[11] EncodeHuf f man [56] Set ACHuf f man [13] neputv
[20] Installlob [57] Set DCHuf f man [66] macl ose
[21] InstallPrediction [41] SizeTable [67] mawopen
[1] JpegEncodeScan [42] SpecifiedHuf fman [31] maseek
[49] MakeConsi stent FraneSi ze [18] UseACHuUf f man [32] matell
[38] MakeEhuff [19] UseDCHuf f man [3] parser
[50] MakeFrane [58] WiteDht [68]

pushst ream

[51] Makel mage [59] WiteDnl [33]
swbyt eal i gn

[52] Makel ob [60] WiteDqt [24] yylex
[28] MakelLi nk [61] WiteEoi [23] yyl ook
[53] MakeScan [43] WiteHuf fman

Appendix B — Decoder Profiling Results

% the percentage of the total running tine of the

tinme program used by this function.

cunul ati ve a running sum of the nunber of seconds accounted

seconds for by this function and those |isted above it.

sel f t he nunber of seconds accounted for by this

seconds function alone. This is the major sort for this
listing.

calls the nunber of tines this function was invoked, if

this function is profiled, else blank.

sel f the average nunber of nilliseconds spent in this
ns/ cal | function per call, if this function is profiled,

el se bl ank.

Tot al the average nunber of mlliseconds spent in this
ns/ cal | function and its descendents per call, if this
function is profiled, else blank.

name the nane of the function. This is the minor sort
for this listing. The index shows the |ocation of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.

Flat profile:

Each sanpl e counts as 0.01 seconds.

% cumul ative sel f
tine seconds seconds
30. 00 0.24 0.24
22.50 0.42 0.18

7.50 0. 48 0. 06

6. 25 0.53 0. 05

6. 25 0.58 0. 05

5.00 0. 62 0.04

5.00 0. 66 0.04

5.00 0.70 0.04

3.75 0.73 0.03

2.50 0.75 0.02

2.50 0.77 0.02

1.25 0.78 0.01

1.25 0.79 0.01

1.25 0. 80 0.01

Post shi ftl Dct Matri x

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0. 00 0. 80 0. 00

0. 00 0. 80 0. 00

0. 00 0. 80 0. 00

0. 00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0.00 0. 80 0. 00

0. 00 0. 80 0. 00

0.00 0. 80 0. 00

calls
5700

5700
45600
45200
58128

5700

5700
51609
46274

5700

234304

5700

5700

47426
5700
5700
5700
2854
2850
2032

78
75
32
16
14
12
12

6

sel f

us/cal |

42.

=
o

P PO W oo NNORERE

O O OO 0O 0O 0 OO0 O O O O O O

11

.53

10
11
69
02
02
58
43
51
04

.75
.75

.00
.00
.00
.00
.00
.00

00
00
00
00
00
00
00

.00
.00

t ot al

us/cal |

42.

10.

11

53

2.19
1.11
1.08
7.02

24.

56

0.72
0. 43

19.

35

0.10
1.75

=

O O OO 0O 0O 0O OO0 O O O O r O

.75

.00
.70
.00
.00
.00
.00

00
00
00
00
00
00
00

.00
.00

79

name

Chenl Dct
ncount

| Quanti ze
Wit eXBound
Wit eXBuffer
DecodeHuf f man
| Zi gzagMat ri x
WiteBl ock
meget v

pget ¢
DecodeAC
meget b
Boundl Dct Mat ri x

bget c
DecodeDC
UseACHuf f man
UseDCHuf f man
Installlob
Install Prediction
Fl ushBuf f er
FI ushl ob

Bl ockMbveTo
MakeXBuf f er
nrtell

Scr eenMar ker
DoMar ker
bget w

bpushc

© ©O 0090900000000 00000

0.

0.

O OO OO O O O O O O O

Cal

. 00
. 00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

. 00
. 00

00

00

. 00
. 00
. 00
. 00
. 00

00
00
00
00
00

. 00
. 00

graph (expl anation foll ows)

0.
MakeConsi st ent Fr aneSi ze

© 000000000000 O0O0 00O

O OO OO0 O O O O O O

. 80
. 80

80
80
80
80
80
80
80
80
80
80
80
80
80
80

. 80
. 80
0.
MakeConsi st ent Fi | eNanes

80

80

. 80
. 80
. 80
. 80
. 80

80
80
80
80
80

. 80
. 80

0.

©O 0O 0000000000000 0000

O OO OO0 OO0 O O O O

. 00
. 00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

. 00
. 00

00

. 00
. 00
.00
.00
. 00

00
00
00
00
00

. 00
. 00

P P R P P R NMNMNMND®®®DMDMBEISNANAN

N = S S N N = e T

©O 0O 0000000000000 0000

O O OO 0O O OO0 O O o O

. 00
. 00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.00
.00

.00

.00
.00
.00
.00
.00

00
00
00
00
00

.00
.00

OO O O O o o o

© 0O 0000000000000

.00
.00

00
00
00
00
00
00
00
00
00
00
00

.00
.00
0.
620000. 00
620000. 00
0.

00

00

.00

.00
.00
.00
.00
.00
.00
.00
0.
620000. 00
0.
0.
0.

00

00
00
00

80

CodeTabl e
Decoder Tabl es
Mak eDhuf f
MakeXhuf f
ReadDht
ReadHuf f man

Si zeTabl e

Cl osel ob
SeekEndl ob
ReadDqt
ScreenAl | Mar ker
Set ACHuf f man
Set DCHuf f man
CheckBasel i ne
CheckScan
CheckVal idity
JpegDecodeFr ane
JpegDecodeScan

MakeFr anme
Makel mage
Makel ob
MakeScan
MakeScanFr equency
ReadSof
ReadSos
Reset Codec
mai n
nr cl ose
nT open

pushst r eam

81

granularity: each sanple hit covers 4 byte(s) for 1.61% of 0.62 seconds

This table describes the call tree of the program and was sorted by

the total anmpunt of tinme spent in each function and its children.

Each entry in this table consists of several lines. The line with the
i ndex nunber at the left hand margin lists the current function.
The lines above it list the functions that called this function
and the lines belowit list the functions this one called.
This line lists:
i ndex A uni que nunber given to each elenent of the table.
I ndex nunbers are sorted numerically.
The index nunber is printed next to every function nane so

it is easier to |l ook up where the function in the table.

%tine This is the percentage of the ‘total’ tine that was spent
in this function and its children. Note that due to
di fferent viewpoints, functions excluded by options, etc,
these nunbers will NOT add up to 100%

sel f This is the total ampunt of time spent in this function.

children This is the total ampount of tine propagated into this

function by its children.

called This is the nunber of times the function was call ed.
If the function called itself recursively, the nunber
only includes non-recursive calls, and is followed by

a ‘+ and the nunber of recursive calls.

name The nane of the current function. The index nunber is
printed after it. |If the function is a nmenber of a
cycle, the cycle nunber is printed between the

function’s nane and the i ndex nunber.

For the function's parents, the fields have the foll ow ng nmeani ngs:

sel f This is the anobunt of tine that was propagated directly

fromthe function into this parent.

children This is the amobunt of tine that was propagated from

the function’s children into this parent.

called This is the nunber of tinmes this parent called the
function ‘/’ the total nunmber of tinmes the function
was called. Recursive calls to the function are not
i ncluded in the nunmber after the “/’.

name This is the name of the parent. The parent’s index
nunber is printed after it. |If the parent is a
nenber of a cycle, the cycle nunber is printed between
the nane and the index nunber.

If the parents of the function cannot be deternined, the word
‘ <spontaneous>' is printed in the ‘name’ field, and all the other
fields are bl ank.

For the function’s children, the fields have the foll ow ng meani ngs:

sel f This is the anobunt of tine that was propagated directly
fromthe child into the function

children This is the amobunt of tine that was propagated from

the child s children to the function.

called This is the nunber of tines the function called
this child */’ the total nunber of times the child
was called. Recursive calls by the child are not
listed in the number after the /.

name This is the name of the child. The child' s index
nunber is printed after it. |If the childis a

nenber of a cycle, the cycle nunber is printed

83

bet ween the nane and the i ndex nunber.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the nenbers of the cycle (as children.)

The ‘+' recursive calls entry shows the nunber of function calls that
were internal to the cycle, and the calls entry for each nenber shows,
for that nenber, how many tinmes it was called from other nenmbers of

t he cycle.
index %tine self children cal l ed name
0. 00 0.62 1/1 mai n [3]
[1] 100.0 0. 00 0.62 1 JpegDecodeFrane [1]
0. 00 0.62 1/1 JpegDecodeScan [2]
0.00 0. 00 3/ 2854 Installlob [22]
0. 00 0. 00 3/78 Fl ushl ob [25]
0.00 0. 00 3/3 SeekEndl ob [41]
0.00 0. 00 3/3 Cl osel ob [40]
0.00 0. 00 2/ 2 ScreenAl | Mar ker [43]
0. 00 0. 00 1/1 nT open [60]
0. 00 0. 00 1/1 nrcl ose [59]
0. 00 0.62 1/1 JpegDecodeFrane [1]
[2] 100.0 0. 00 0.62 1 JpegDecodeScan [2]
0.24 0. 00 5700/ 5700 Chenl Dct [5]
0.04 0. 10 5700/ 5700 WiteBl ock [6]
0.02 0.09 5700/ 5700 DecodeAC [7]
0. 06 0. 00 5700/ 5700 | Quanti ze [10]
0.04 0. 00 5700/ 5700 | Zi gzagMatri x [12]
0.01 0. 00 5700/ 5700 Post shi ft1Dct Matri x
[17]
0.01 0. 00 5700/ 5700 Boundl Dct Matri x [16]
0.00 0.01 5700/ 5700 DecodeDC [18]
0.00 0. 00 5700/ 5700 UseDCHuf f man [21]
0. 00 0. 00 5700/ 5700 UseACHuf f man [20]

[3] 100.0
[4] 100.0
[5] 38.7
[6] 22.6
[7] 17.8
[8] 16. 1
[9] 10. 1

2850/ 2850
2850/ 2854

5700/ 5700
5700

5700/ 5700
5700
45600/ 45600
75/ 78
75/ 75

5700/ 5700

5700
52428/ 58128
46725/ 51609

45600/ 45600
45600
45200/ 45200

5700/ 58128
52428/ 58128
58128

234304/ 234304

5700/ 5700

84

Install Prediction [23]
Instal I 1ob [22]

_start [4]

mai n [3]
JpegDecodeFranme [1]
Makel mage [52]
MakeFrame [51]
MakeScan [54]

<spont aneous>
_start [4]

mai n [3]

JpegDecodeScan [2]
Chenl Dct [5]

JpegDecodeScan [2]
WiteBl ock [6]
Wit eXBound [8]

Fl ushl ob [25]

Bl ockMoveTo [26]

JpegDecodeScan [2]
DecodeAC [7]
DecodeHuf f man [9]
negetv [13]

Wit eBl ock [6]
Wit eXBound [8]
WitexBuffer [11]

DecodeDC [18]
DecodeAC [7]
DecodeHuf f man [9]
negetb [14]

JpegDecodeScan [2]

[11] 8.1 0.05

1200
45200/ 45200
45200+1200

1200/ 2032

1200

5700/ 5700
5700

4884/ 51609
46725/ 51609
51609
17015/ 46274

234304/ 234304

234304
29259/ 46274

17015/ 46274
29259/ 46274
46274

46743/ 47426

5700/ 5700
5700

5700/ 5700
5700

5700/ 5700
5700

5700/ 58128
4884/ 51609

8/ 47426

85

| Quanti ze [10]

WiteXBuffer [11]
Wit eXBound [8]
WitexBuffer [11]
Fl ushBuf fer [24]
WiteXBuffer [11]

JpegDecodeScan [2]
| Zi gzaghWatri x [12]

DecodeDC [18]
DecodeAC [7]
negetv [13]
pgetc [15]

DecodeHuf f man [9]
negetb [14]
pgetc [15]

negetv [13]
negetb [14]
pgetc [15]
bgetc [19]

JpegDecodeScan [2]
Boundl Dct Matri x [16]

JpegDecodeScan [2]
Post shift1Dct Matri x

JpegDecodeScan [2]
DecodeDC [18]
DecodeHuf f man [9]
negetv [13]

ReadDht [37]

© oo o0ooo0o0o0

© oo oo o000

10/ 47426
11/ 47426
26/ 47426
84/ 47426
132/ 47426
412/ 47426

46743/ 47426
47426

5700/ 5700
5700

5700/ 5700
5700

1/ 2854

3/ 2854
2850/ 2854
2854

2850/ 2850
2850

832/ 2032

1200/ 2032
2032

78

86

ReadSos [57]
ReadSof [56]
ScreenMar ker [29]
DoMar ker [30]
ReadDqt [42]
ReadHuf f man [38]
pgetc [15]

bgetc [19]

JpegDecodeScan [2]
UseACHuf f man [20]

JpegDecodeScan [2]
UseDCHuf f man [21]

ReadSos [57]
JpegDecodeFranme [1]
JpegDecodeScan [2]
Installlob [22]

JpegDecodeScan [2]
Install Prediction [23]

Fl ushl ob [25]
WiteXBuffer [11]
Fl ushBuf fer [24]

JpegDecodeFranme [1]
Wit eBl ock [6]

Fl ushl ob [25]

Fl ushBuf fer [24]

Wit eBl ock [6]
Bl ockMoveTo [26]

Makel ob [53]
MakeXBuf fer [27]

14

12/ 12

12

84/ 47426
4/ 4
2/ 2
2/ 12
171
1/1

87

ReadSof [56]
ReadSos [57]
ReadDqt [42]
ReadDht [37]
nrtell [28]

ScreenAl | Mar ker [43]
Scr eenMar ker [29]
bgetc [19]

DoMar ker [30]

Scr eenMar ker [29]
DoMar ker [30]
bgetc [19]
ReadDht [37]
ReadDqt [42]
bgetw [31]
ReadSof [56]
ReadSos [57]

ReadSos [57]
ReadDqt [42]
DoMar ker [30]
ReadSof [56]
ReadDht [37]
bgetw [31]

ReadDqt [42]
ReadDht [37]

bpushc [32]

ReadHuf f man [38]
CodeTabl e [33]

ReadHuf f man [38]
Decoder Tabl es [34]

ReadDht [37]

[35] 0.0 0.00 0.00 4 MakeDhuf f [35]

0. 00 0. 00 4/ 4 ReadDht [37]
[36] 0.0 0. 00 0. 00 4 MakeXhuf f [36]
0. 00 0. 00 4/ 4 DoMar ker [30]
[37] 0.0 0. 00 0. 00 4 ReadDht [37]
0.00 0. 00 8/ 16 mtell [28]
0.00 0. 00 8/ 47426 bgetc [19]
0.00 0. 00 4/ 12 bgetw [31]
0. 00 0. 00 4/ 4 MakeXhuf f [36]
0.00 0. 00 4/ 4 MakeDhuf f [35]
0. 00 0. 00 4/ 4 ReadHuf f man [38]
0. 00 0. 00 4/ 6 bpushc [32]
0. 00 0. 00 2/ 2 Set ACHuf f man [44]
0. 00 0. 00 2/ 2 Set DCHuf f man [45]
0.00 0. 00 4/ 4 ReadDht [37]
[38] 0.0 0. 00 0. 00 4 ReadHuf f man [38]
0.00 0. 00 412/ 47426 bgetc [19]
0.00 0. 00 4/ 4 Si zeTabl e [39]
0.00 0. 00 4/ 4 CodeTabl e [33]
0. 00 0. 00 4/ 4 Decoder Tabl es [34]
0.00 0. 00 4/ 4 ReadHuf f man [38]
[39] 0.0 0. 00 0. 00 4 Si zeTabl e [39]
0. 00 0. 00 3/3 JpegDecodeFranme [1]
[40] 0.0 0. 00 0. 00 3 Cl osel ob [40]
0. 00 0. 00 3/3 JpegDecodeFrame [1]
[41] 0.0 0.00 0. 00 3 SeekEndl ob [41]
0.00 0. 00 2/ 2 DoMar ker [30]
[42] 0.0 0. 00 0. 00 2 ReadDgt [42]
0.00 0. 00 132/ 47426 bgetc [19]
0.00 0. 00 4/ 16 mtell [28]
0. 00 0. 00 2/ 12 bgetw [31]

[49] 0.0 0. 00
MakeConsi st ent Fi | eNanes

[50] 0.0 0.00
MakeConsi st ent Fr aneSi ze

0. 00
[51] 0.0 0.00
0. 00
[52] 0.0 0.00
0. 00

89
bpushc [32]
JpegDecodeFrane [1]
ScreenAl | Mar ker [43]

Scr eenMar ker [29]

ReadDht [37]
Set ACHuf f man [44]

ReadDht [37]
Set DCHuf f man [45]

ReadSos [57]
CheckBasel i ne [46]

ReadSos [57]
CheckScan [47]

ReadSos [57]
CheckVal idity [48]

ReadSos [57]

ReadSof [56]

mai n [3]
MakeFr ame [51]

mai n [3]
Makel mage [52]

ReadSos [57]

90

[53] 0.0 0. 00 0. 00 1 Makel ob [53]
0.00 0. 00 32/ 32 MakeXBuf fer [27]
0. 00 0. 00 1/1 mai n [3]
[54] 0.0 0.00 0. 00 1 MakeScan [54]
0. 00 0. 00 1/1 MakeScanFr equency [55]
0.00 0. 00 1/1 MakeScan [54]
[55] 0.0 0. 00 0. 00 1 MakeScanFr equency [55]
0. 00 0. 00 1/1 DoMar ker [30]
[56] 0.0 0.00 0. 00 1 ReadSof [56]
0. 00 0. 00 11/ 47426 bgetc [19]
0. 00 0. 00 3/12 bgetw [31]
0. 00 0. 00 2/ 16 nrtell [28]
0. 00 0. 00 1/1
MakeConsi st ent FraneSi ze [50]
0. 00 0. 00 1/1 DoMar ker [30]
[57] 0.0 0.00 0. 00 1 ReadSos [57]
0.00 0. 00 10/ 47426 bgetc [19]
0.00 0. 00 2/ 16 nmtell [28]
0. 00 0. 00 1/ 12 bgetw [31]
0. 00 0. 00 171
MakeConsi st ent Fi | eNanes [49]
0. 00 0. 00 1/1 CheckVal idity [48]
0. 00 0. 00 1/1 CheckBasel i ne [46]
0. 00 0. 00 1/1 CheckScan [47]
0. 00 0. 00 1/1 Makel ob [53]
0.00 0. 00 1/ 2854 Installlob [22]
0. 00 0. 00 1/1 Reset Codec [58]
0.00 0. 00 1/1 ReadSos [57]
[58] 0.0 0.00 0. 00 1 Reset Codec [58]
0. 00 0. 00 1/1 JpegDecodeFranme [1]

[59] 0.0 0.00 0.00 1 nrcl ose [59]

91

1/1 JpegDecodeFrame [1]
1 nT open [60]

1/1 pushstream [61]

1/1 nT open [60]

1 pushstream [61]

.00
[60] 0.0 00
.00
.00
[61] 0.0 00
I ndex by function name
[26] Bl ockMbveTo
Set DCHuf f man
[16] Boundl Dct Matri x

Si zeTabl e
[46] CheckBaseline
UseACHuUf f man
[47] CheckScan
UseDCHuf f man
[48] CheckVvalidity
Wit eBl ock

[5] Chenl Dct
Wi t eXBound
[40] C osel ob
Wit exBuf f er
[33] CodeTabl e

[7] DecodeAC
[18] DecodeDC

[9] DecodeHuf f nan
[34] Decoder Tabl es
[30] DoMarker
[24] FlushBuffer
[25] Flushlob
[10] IQuantize
[12] 1Zi gzagMatri x
[22]
[23]

pushstream

Installlob
Install Prediction

[1] JpegDecodeFrane
[2] JpegDecodeScan

[49]

[50]

[35]

[51]

[52]

[53]

[54]

[55]
[27]
[36]
[17]
[37]
[42]
[38]
[56]
[57]
[58]
[43]
[29]

[41]
[44]

MakeConsi st ent Fi | eNanes [45]

MakeConsi st ent FraneSi ze [39]

MakeDhuf f

MakeFr ame

Makel mage

Makel ob

MakeScan

MakeScanFr equency
MakeXBuf f er
MakeXhuf f

Post shiftlDctMatrix
ReadDht

ReadDqt

ReadHuf f man
ReadSof

ReadSos

Reset Codec
ScreenAl | Mar ker
Scr eenMar ker

SeekEndl ob
Set ACHuf f man

[20]

[21]

[6]

[8]

[11]

[19]

[31]

[32]
[3]

(163)

[14]
[13]
[59]
[60]
[28]
[15]
[61]

bget c
bget w
bpushc
mai n
ncount
meget b
meget v
nr cl ose
nT open
nrtell

pget c

Appendix C — Motion JPEG Coder Source
Code

File: ipeqg.c (modifications)

/***

Copyright (C) 1990, 1991, 1993 Andy C. Hung, all rights reserved.
PUBLI C DOVAI N LI CENSE: Stanford University Portabl e Video Research
Goup. If you use this software, you agree to the follow ng: This
program package is purely experinental, and is |licensed "as is".
Permission is granted to use, nodify, and distribute this program
wi t hout charge for any purpose, provided this |icense/ disclainer

92

notice appears in the copies. No warranty or maintenance is given,
either expressed or inplied. 1In no event shall the author(s) be
liable to you or a third party for any special, incidental,
consequential, or other damages, arising out of the use or inability
to use the program for any purpose (or the |loss of data), even if we
have been advi sed of such possibilities. Any public reference or
advertisenent of this source code should refer to it as the Portable
Vi deo Research Group (PVRG code, and not by any author(s) (or
Stanford University) name.

Kok kR Rk kR kK Rk Kk Kk R Rk Rk Kk Kk kK kKR Kk kK Kk Kk Kk k[

/*

hhkhkhkkhhkhkhhkhhhhkhhkhhkhkhhkhkhkhhhkhkhhhkhkhhkhhkhhkhhkkhkhhkhhkkhkhk k%

jpeg.c

This file contains the main calling routines for the JPEG coder.

R R R R R R R R

*/

/*LABEL jpeg.c */

/* Include files. */

#incl ude "tabl es. h"

#i ncl ude "gl obal s. h"

#i ncl ude "nj peg. h"
#i f def SYSV

#i ncl ude <sys/fcntl. h>
#endi f

/*
Define the functions to be used with ANSI prototyping.
*/

/ *PUBLI C*/

int main();

static voi d JpegEncodeFrane();

static void JpegDecodeFrane();

static void JpegDecodeScan();

static void JpeglLossl essDecodeScan();
static void Hel p();

voi d MJPEGEncoder Moti onJPEG voi d) ;
voi d MJPEGDecoder Moti onJPEG voi d) ;

extern void Printlmage();
extern void PrintFranme();

93

extern void PrintScan();

extern voi d Makel mage();

extern void MakeFrame();

extern void MakeScanFrequency();
extern void MakeScan();

extern void MakeConsi stent Fi | eNames() ;
extern void CheckValidity();

extern int CheckBaseline();

extern void ConfirnFileSize();

extern void JpegQuanti zati onFrane();
extern voi d JpegDef aul t Huf f manScan() ;
extern voi d JpegFrequencyScan();
extern voi d JpegCustonScan();

extern voi d JpegEncodeScan();

extern void JpeglLossl essFrequencyScan();
extern void JpeglLossl essEncodeScan();

/ * PRI VATE*/

/* These variables occur in the streamdefinition. */

extern int C eartoResync;
extern int LastKnownResync;
extern int ResyncEnabl e;
extern int ResyncCount;
extern int EndofFile;

extern int Endofl mage;

/* Define the paraneter passing structures. */

I MAGE *Cl mage=NULL; /* Current lmage variables structure */
FRAME * CFr anme=NULL; /* Current Frane variables structure */
SCAN * CScan=NULL; /* Current Scan variables structure */

/* Define the MDU counters. */
int Current VMDU=0; /* Holds the value of the current MDU */
int Nunmber MDU=0; /* This nunber is the nunber of MDU s */

int count = 1; /* MIPEG used to assign a .1 to the output filenane

for the first decoding and .2 for the subsequent
and the last. */

/* Define Lossless info */

int Lossl essPredictorType=0; /* The |ossless predictor used */

i nt Poi nt Transf or n=0; /* This paraneter affects the shifting inio.c */

94

/* How we break things up */

i nt ScanConponent Thr eshol d=SCAN_COVPONENT_THRESHOLD;

/* Define the support/utility variables.*/

int ErrorVal ue=0; /* Holds error upon return */

int Loud=MJTE; /* Loudness gives |evel of debug traces */
int Huf fmanTrace=NULL; /* When set, dunps Huf fman statistics */

int Notify=1; /* When set, gives imge size feedback */

int Robust =0;

static int LargeQ=0; /* When set, large quantization is enabled */

int Conponent | ndex;

/* We default to the Chen DCT algorithm */
vFunc *UseDct = ChenDct; /* This is the DCT algorithmto use */
vFunc *Usel Dct = Chenl Dct ; /* This is the inverse DCT algorithmto use */

/* Add sonme macros to ease readability. */
#define Defaul t Dct (*UseDct)
#define Defaul t1Dct (*UselDct)
int njpegFlag = 0;
[* START*/

/ * BFUNC

main() is first called by the shell routine upon execution of the
program

EFUNC*/

int main(argc, argv)
int argc;
char **argv;

BEG N("mai n");
int i;
int Oracle=0; /* Oracle nmeans that we use the |exer interactively */

int frameCount;

Makel mage() ; /* Construct the inmage structures */
MakeFr ane() ;
MakeScan() ;

if (argc == 1) /* No argunents then print help info */
{

Hel p();
exit(-1);

Conponent | ndex=1;
for(i=1;i<argc;i++)

{

/* Start with index 1 (Could be zero, but JFIF conpat) */
/* Else |loop through all argunents. */

if (!strenmp(argv[il],"-JFIF"))

Cl mage- >Jfif=

1;

else if (!strcmp(argv[i],"-ci"))
Conponent | ndex=at oi (argv[++i]);

else if (*(argv[i]) =="-") /* Strip off first "dash" */
{
switch(*(++argv[i]))

{

case 'a’: /* -a Reference DCT */
UseDct = ReferencelDct;
Usel Dct = Referencel Dct;
br eak;

case 'b': /* -b Lee DCT */
UseDct = LeeDct;
Usel Dct = Leel Dct
br eak;

case 'd': /* -d Decode */
Cl mage- >Jpeghbde = J_DECODER,
br eak;

case 'k': /* -k Lossl ess node */
Cl mage- >JpegMbde = J_LOSSLESS;
CFr ane- >Type=3;

Lossl essPredictorType = atoi (argv[++i]);

br eak;
case ' f’
switch(*(++argv[i]))
{
case 'W: /* -fw Frane width */

CFr ame- >W dt h[Conponent | ndex] =
atoi (argv[++i]);

br eak;

case

"h': /* -fh Frame hei ght */

CFr anme- >Hei ght [Conponent | ndex] =

atoi (argv[++i]);

br eak;

defaul t:
WHEREAM () ;
printf("lllegal option: f%.\n",

*argv[i]);

exi t (ERROR_BOUNDS) ;
br eak;

}
br eak;
case 'i’:

96

switch(*(++argv[i]))
{
case "W : /* -iw lmage width */
CFrane->G obal Wdth = atoi (argv[++i]);
if ((njpegFlag == 1) || (njpegFlag == 2))
nmBequence. wi dt h = CFr ame->d obal W dt h;
br eak;
case 'h': /* -ih I'mage height */
CFr ane- >A obal Hei ght = atoi (argv[++i]);
if ((njpegFlag == 1) || (npegFlag == 2))
nSequence. hei ght = CFr ane->d obal Hei ght ;
br eak;
/* CGet the number of frames in the Mtion JPEG sequence. */
case 'n’:
nBSequence. | ength = atoi (argv[++i]);
printf("HERE LENGTH: %", nBequence.!|ength);
for (frameCount = 0; franeCount < nBSequence. | ength;
f rameCount ++)

{
nmBequence. fil enanme[frameCount] = argv[frameCount + 8];
nSequence. numivbw = (i nt) (nBequence.width / MBSI ZE);
nSequence. nunivbh = (i nt) (nBequence. hei ght / MBSI ZE);
nSequence. nunivBs = nfSequence. numvbw *
nSequence. nunmivbh;
}
br eak;
defaul t:
VHEREAM () ;
printf("lllegal option: i%.\n",
*argv[i]);
exi t (ERROR_BOUNDS) ;
br eak;
}
br eak;
case 'h': /* -h horizontal frequency */

CFr anme- >hf [Conponent | ndex] =
atoi (argv[++i]);
br eak;
case 'm:
printf("Mtion JPEG Mdde.\n\n");
sw tch(*(++argv[i]))
{
case 'e’:
m pegFlag = 1;
br eak;
case 'd':
m pegFlag = 2;
br eak;

97

98

defaul t:

printf("Wong Paraneteres.\n");

exit();
br eak;
}
br eak;
#i f ndef PRODUCTI ON_VERSI ON
case '|’: /* -1 loudness for debugging */

Loud = atoi (argv[++i]);
br eak;
#endi f

case 'n’: /* Set non-interleaved node */
ScanConponent Thr eshol d=1;
br eak;

case '0': /* -0 Oracle node (input parsing)*/
O acl e=1;
br eak;

case 'p’:
CFr ame- >Dat aPreci sion = atoi (argv[++i]);
if (!CFrame->Type) CFrane->Type = 1;

br eak;
case 'r’: /* -r resynchronization */
CFr ane- >Resyncl nterval = atoi (argv[++i]);
br eak;
case '(q': /* -q Q factor */
if (*(++argv[i])=="1") LargeQ=1l;
CFrame->Q = atoi (argv[++i]);
br eak;
case 'V': /* -v vertical frequency */

CFr anme- >vf [Conponent | ndex] = atoi (argv[++i]);
br eak;
case 's’: /* -s streamfile nane */
Cl mage- >Streanfi | eName = argv[++i];
br eak;
case 't’
Poi nt Tr ansf or n=at oi (argv[++i]);
br eak;
#i f ndef PRODUCTI ON_VERSI ON
case 'x': /* -x trace */
Huf f manTrace = 1,
br eak;
#endi f
case 'Uu': /* -u disable w dth/size output */
Not i fy=0;
br eak;
case 'y':
Robust =1;
br eak;

case 'z': /* -z use default Huffman */
Cl mage- >Jpeghbde | = J_DEFAULTHUFFNMAN,
br eak;
defaul t:
VHEREAM () ;
printf("lllegal option in conmand line: %.\n",
*argv[i]);
exi t (ERROR_BOUNDS) ;
br eak;
}
}
el se /* If not a "-" then a filename */
{

CFr ane- >cn[CFr ane- >3 obal Nunber Conponent s++] = Conponent | ndex;
i f (!CFrane->vf[Conponent | ndex])

CFr ane- >vf [Conponent | ndex] =1;
i f (! CFranme->hf[Conponent | ndex])

CFr ame- >hf [Conponent | ndex] =1;
CFr ame- >Conponent Fi | eNane[Conponent | ndex] = argv[i];
Conponent | ndex++;

}
}
if (Oacle) /* 1f Oacle set */

{
initparser(); /* Initialize interactive parser */
parser(); /* parse input fromstdin */
exit (ErrorVal ue);

}

/* Otherwi se act on information */

if (!(CGetFlag(Cl mage->JpegWbde, J DECODER)) && [/* Check for files */
(CFr ane- >d obal Nunber Conponents == 0))

{
VHEREAM () ;
printf("No conponent file specified.\n");
exi t (ERROR_BOUNDS) ;
}
if (Clmage->Streanfil eName == NULL) /* Check for stream nane */
{

i f (CFrane->Conponent Fi | eNane[CFrane->cn[0]]) /* If doesn’t exist */
{ /* Create one. */
Cl mage- >Streanfi | eNane =
(char *) calloc(strlen(CFrame->Conponent Fi | eNane[CFrane->cn[0]]) +6,
si zeof (char));
sprintf(Cd nage->Streanfil eNane, "%.j pg",

99

100

CFr anme- >Conponent Fi | eNanme[CFranme->cn[0]]);
}

el se

{
VWHEREAM () ;

printf("No streamfilenane.\n");
exi t (ERROR_BOUNDS) ;

}
}
i f (GetFlag(Clnage->Jpeghbde, J_DECCDER)) /* 1f decoder flag set then */
{ /* decode frame. */
JpegDecodeFrane() ;
}
el se
{
if (!(CFrane->d obal Wdth) || ! (CFrame->d obal Height)) /* Dinensions ? */
{
WHEREAM () ;
printf("Unspecified frame size.\n");
exi t (ERROR_BOUNDS) ;
}
if (m pegFlag == 0)
{
swopen(Cl mage- >St r eanti | eNane, 0) ; /* Open output file, index 0*/
JpegEncodeFrane() ; /* Encode the frame */
swel ose() ; /* Flush remaining bits */
}
}

if (mpegFlag == 1)
MIPEGEncoder Mot i onJPEX) ;
if (m pegFlag == 2)
MIPEGDecoder Mot i onJPEX) ;
exit (ErrorVal ue);

voi d MIPEGEncoder Moti onJPEG voi d)
{
int frameCount, nbCount;

struct MIPEGFrane current, newPrevious, previous,
char* nane;

tenp;

printf("LENGTH: %", nfequence. | ength);

for (franmeCount = 0; frameCount < nBequence. | engt h;
{

frameCount ++)

CFr anme- >Conponent Fi | eNanme[1] = nBSequence. fi | enane[f raneCount] ;
Cl mage- >Str eanti | eName = nBequence. fil enang[f rameCount];
Cl mage- >Streanfi | eName = (char *)
cal l oc(strlen(CFrame->Conponent Fil eNane[1]) + 6, sizeof(char));

101

frame[frameCount].frFil ename = CFrame- >Conponent Fi | eNane[1] ;
current = frame[frameCount];

frame[frameCount].frFil ename = CFrame->Conponent Fi | eNane[1] ;

newPrevi ous = frane[franeCount];

/* Set franes. */

MIPEGget Franme(¤t) ;

MIPEGset Macr obl ocks(¤t);
MIPEGget Fr ane(&ewPr evi ous) ;
MIPEGset Macr obl ocks(&ewPr evi ous) ;

if (franmeCount == 0)

{
current.frhMde = 0;
previ ous = newPrevi ous;
name = MIPEGset Fi | enane(current. frFil enane);
MIPEGMw i t eFi rst Frame(¤t, nane);
}

/* Video Coder. */
if (frameCount > 0)

{
MIPEGot i onEsti mati on(&previ ous, ¤t);
for (nbCount = 0; nbCount < nBSequence. nunmvBs; nbCount ++)
{
if (current.nb[mbCount].nobde == 1)
{
MIPEGset Resi dual Matri x(mbCount, &previous,
¤t);
MIPEGdct (mbCount, ¤t);
MIPECGquant i zati on(mbCount, ¤t);
MIPE&zi gzag(mbCount, ¤t);
MIPEG unLengt h(mbCount, ¤t);
}
}
previ ous = newPrevi ous;
name = MJIPEGset Fi |l enane(current. frFil enane);
MIPEGMw i t eFrame(¤t, current.frhMde, nane);
}
}

102

voi d MIPEGDecoder Moti onJPEG voi d)
{
int count, filenane, nbCount;
char* current;
doubl e psnr;
printf("LENGTH: %", nfSequence.|ength);
for (count = 0; count < mBequence.|ength; count++)

{
current = nBequence.filename[count];
MIPEGset Vi rtual MBs(current);
printf ("% PPPP\n", count);
if (count == 0)
{
MIPEGset Vi rtual MBs(current);
MIPEGset MBPosi ti ons();
M PEGraekeRawFr anme() ;
filenane = MIPEGset Decoder Fi | enanme(current);
MIPEGAr i t eVi rtual Frane(fil enane);
}
if (count > 0)
{
MIPEGget MBMbdes(current);
for (mbCount = 0; nbCount < nBSequence. numvBs; nbCount ++)
{
printf("PASSED\n");
if (df.dMVB[mbCount].node == 1)
{
MIPEG nvRunLengt h(mbCount) ;
MIPEG nvZi gzag(nbCount) ;
MIPEGQ nvQuanti zati on(nmbCount) ;
MIPEG nvDct (mbCount) ;
MIPEGget Resi dual Matri x(mbCount) ;
MIPEGupdat eVi r t ual Frame(mbCount) ;
filename = MIPEGset Decoder Fi | ename(current);
MIPEGAr i t eVi rtual Frane(fil enane);
filenane = MIPEGget PSNRFi | enane(current);
psnr = MIPECGcal cul at ePSNR(fi | enane) ;
}
}
}
}

103

[*END*/

File: mjpegenc.c

| **

** Modul e: nj pegenc.c: Mtion JPEG Encoder.

*% [

#i ncl ude "nj peg. h"
#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

/* 3D VLC Table (H 263). */
int Tabl e3DVLC] 103][5] = {
/* Last, Run, Level, Bits, Code Word */

o
o
L
w
N

o, 0, 2, 5 15
o, o0 3 7, 21,
0o, 0, 4, 8, 23,
0o, 0 5 9, 31,
o, o0, 6, 10, 37,
o, 0, 7, 10, 36,
o, 0, 8, 11, 33,
o, 0, 9, 11, 32,

o, 0, 10, 12, 7,

0, 0, 11, 12, 6,

0, 0, 12, 12, 32,
o, 1, 1, , 6,

o, 1, 2, , 20,
0, 1, 3 , 30,
0, 1, 4, 11, 15,
o, 1, 5, 12, 33,
o, 1, 6, 13, 80,
o, 2, 1, , 14,
0, 2, 2, , 29,
0, 2, 3, 11, 14,
0, 2, 4, 13, 81,
o, 3, 1, 6, 13,
0, 3, 2, 10, 35
o, 3, 3, 11, 13,
0, 4, 1, 6, 12,
0, 4, 2, 10, 34,
0, 4, 3, 13, 82,
o, 5 1, 6, 11,
0, 5, 2, 11, 12,
0, 5, 3, 13, 83,
0 6 1, 7, 19,

104

A4 Y @ o~ . © . AN dooN~N®ddOoO o ®N~© S WON W .0 . mNOON~NO©OWwY O NAdGo oS o
O Hd Hd Hd o 0N ®ANNNN®MM®M O ANNN®®MDONND AT A A A A A A A NNNNNNNA NN
4™ .4 .4 .4 .®m 0o0ocococococoaNaN®mm®m .o - - . -0 O
A AN AdANAN A 0 A0 000 A dA oA A A ddd A A AN A ANHNNNO®GO®GO®G®©B o oo o o o A o
N oo ddad da da AN dd dddadadadaddaddaddaddadad®madNddeaddoaddoaddodddddd Ao«

- e - i i . . o0 dN MY N ON©00 0 4N Y WwWoe o - o0 da®m< | O~ 0
© © NN 6 0 0 0 o+ 94 o d d o d d o a4 dCa 0 NNNQANOS SO dda oS 1w o N A A ddAodod oA A o

O 0000000 o0 00000000000 0 00 0 0 0 A ddoudouaoadouaoaoudoaouadoaouaoadodoadodoadodddd

105

1, 19, 1, 10, 22,
1, 20, 1, 10, 21,
1, 21, 1, 10, 20,
1, 22, 1, 10, 19,
1, 23, 1, 10, 18,
1, 24, 1, 10, 17,
1, 25, 1, 11, 7,
1, 26, 1, 11, 6,
1, 27, 1, 11, 5,
1, 28, 1, 11, 4,
1, 29, 1, 12, 36,
1, 30, 1, 12, 37,
1, 31, 1, 12, 3s,
1, 32, 1, 12, 39,
1, 33, 1, 13, 88,
1, 34, 1, 13, 89,
1, 35, 1, 13, 90,
1, 36, 1, 13, 91,
1, 37, 1, 13, 92,
1, 38, 1, 13, 93,
1, 39, 1, 13, 94,
1, 40, 1, 13, 95,
-1, -1, -1, 7, 3 };

#define LAST 0O /* Holds the index for LAST information. */
#define RUN 1 /* Holds the index for RUN information. */
#define LEVEL 2 /* Holds the index for LEVEL information. */
#define NBITS 3 /* Holds the index for BITS information. */
#define CODEW 4 /* Hol ds the index for CODE WORD i nformation. */

| **

** Function: voi d get Frame(struct MPEGFrane* frane);
** Description: This function opens a file containing a raw i nage and reads the

val ues
** of all the pixels inside it.
** Parameters: A pointer to an MIPEGFrane structure.
** Return Val ue: NONE

**/
voi d MIPEGget Frame(struct MPEGFrane* frane)
{
FILE* fp; /* The inage file. */
int iwih; /* Wdth iwand height ihin the raw imge. */

if ((nBequence.width % MBSIZE != 0) || (nBequence.height % MBSIZE ! = 0) ||
(nBSequence. wi dth < MBSIZE) || (nBequence. height < MBSI ZE))
/* Detect an error if inmage dimensions cannot contain an exact nunber of
nmacr obl ocks or inmage dinensions are smaller than a nmacrobl ock. */

106

printf("lIncorrect inage dinensions.\n");
/* Display the error on screen. */

exit(1l); /* Exit with an unsuccessful paraneter. */

}

if ((fp = fopen(frame->frFilenane,"r")) == NULL)
/* Open the image file. Detect error. */
{

printf("Cannot open file %.\n", frame->frFilenanme); /* Display the error
on screen. */

exit(1l); /* Exit with an unsuccessful paraneter. */

for (ih = 0; ih < nBequence. hei ght; ih++)
/* Take one row at a tinme until the full height is reached. */

{
for (iw = 0; iw < nBequence.width; iwt+)
/* Scan the row until the full width is reached. */
{
unsi gned char val;
fread(&val, 1, sizeof(unsigned char), fp); /* Read pixels. */
frame->frValue[iwj[ih] = (int)(val); /* Assign values. */
if (frame->frValue[iwj[ih] < 0.0 || frane->frVvalue[iw][ih] > 255.0)
/* Detect error if value is out of range. */
{
printf("Gey level range error.\n");
/* Display the error on screen. */
exit(1); /* Exit with an unsuccessful parameter. */
}
}
}
fclose(fp); /* Cose the opened image file. */
}
/**
** Function: voi d set Macrobl ocks(struct MIPEGFranme* frane);

** Description: This function sets the nmacrobl ocks, 16x16 arrays of pixels,

* %

inside a frame. The function assigns nacrobl ocks fromleft

*x to right and top to bottom

** Parameters: A pointer to an MIPEGFranme structure.
** Return Val ue: NONE.

**/

voi d MIPEGset Macrobl ocks(struct MIPEGFrame* frane)
{
int i, j, iw ih, initw, tenpA
startw = 0, starth = 0,

107

numvbw, nunivbh,
mbCount; /* Counter of macrobl ocks */

mbCount = 0; /* Initialize Macrobl ock counter. */

/* Find the number of macroblocks that fit in width and height. */
numVbw = (i nt) (nBequence.width / MBSI ZE);
numvbh = (int)(nBequence. hei ght / MSI ZE);

/* Scan image and set macrobl ocks fromtop to bottom and then
left to right. */
for (i = 0; i < numvbw;, i++)
{
for (j = 0; j < nunMbh; j++)
{
/* Initial nmacroblock values. */
frame- >nb[nbCount] . sum = 0;
frame->nb[nbCount] . nean = O;

for (ih = 0; ih < MBSIZE;, ih++)
/* Take one row at a tine until the full height of macroblock is reached. */
{

initw = startw,

for (iw=0; iw< MSIZE, iwt+)
/* Scan the row until the full width of macroblock is reached. */
{
if ((iw==10) & (ih == 0))
/* Set top left pixel coordinates of the
macr obl ock. */

frame->nb[nbCount]. xBegin = startw,
frame->nb[nbCount].yBegin = starth;

if ((iw==15) && (ih == 15))
/* Set bottomright pixel coordinates of the macrobl ock. */
{
frame->nb[nbCount]. xEnd = startw,
frame->nb[nbCount].yEnd = starth;
}
/* Assign values to macrobl ock pixels. */
frame->nb[nbCount] . mbVal ue[iw [i h] =

frame->frValue[startw] [starth];

frame->nb[nbCount]. sum +=
frame->nb[nbCount]. mbVal ue[iw] [ih];
st art w++;

108

}
startw = initw

start h++;

frame->nb[nbCount] . mean =
(int)(frame->nb[nbCount].sum/ 255.0);

tenpA = frame->nmb[mbCount]. sum -
(frame->nmb[nbCount] . nean * 256);

frame->nb[nbCount].a = get Abs(tenpA);

mbCount ++; /* Go to the next macrobl ock. */

}
startw = startw + MBSI ZE;
starth = 0;

/* Set the total nunber of nacrobl ocks assigned in the frame. */
nmSequence. nunivBs = nbCount ;

}

/**

** Function: void getFrX(int x, int nbNum struct MIPEGFranme* frane);

** Description: This function takes a horizontal coordinate of a macrobl ock
** and returns a coordinate value relative to the frane.

** Paraneters: The horizontal coordinate x. The macrobl ock nunber nbNum
*x A pointer to an MIPEGFrame structure.

** Return Value: A horizontal coordinate.

*% [

int getFrX(int x, int nbNum struct MIPEGFrame* frane)

{
/* The horizontal coordinate at the begi ning of the macrobl ock + x. */
return (franme->nb[nbNunj . xBegin + X);

}

/**

** Function: void getFrY(int y, int nmbNum struct MIPEGFranme* frane);

** Description: This function takes a vertical coordinate of a macrobl ock

** and returns a coordinate value relative to the frane.

** Paraneters: The vertical coordinate x. The macrobl ock nunber nbNum

** A pointer to an MIPEGFranme structure.

** Return Value: A horizontal coordinate.

**/

int getFrY(int y, int nbNum struct MIPEGFrame* frane)

{
/* The vertical coordinate at the begi nning of the macroblock + vy. */
return (franme->nb[nbNuni.yBegin + y);

109

}

/**
** Function: voi d set Sear chW ndow(struct MIPEGFrame* c, int nbNum
* % int* ctlx, int* ctly, int* cbrx, int* cbry);

** Description: Sets the search w ndow of each nacrobl ock.

** Paraneters: A pointer to an MIPEGFranme structure, the macrobl ock nbNum
*x the top-left coordinates ctlx-ctly and the bottomright

*x coordi nates cbrx-cbry.

** Return Val ue: NONE

*x |

voi d set Sear chW ndow(struct MIPEGFrame* c, int nbNum int* ctlx, int* ctly, int* cbrx,
int* chry)
{

int tenp;

/* Set the top left coordinates of the search w ndow. */
temp = getFrX(0, nbNum ¢c¢); /* Get the top left X coordinate of the nmacrobl ock. */
if (temp !=0) /* If there are other nacroblocks on its left ... */
ctlx = tenmp - 16; / ... Set the starting X coordinate of the search
w ndow. */
el se
ctlx = 0; / Oherwise the starting X coordinate of the search w ndow is

temp = getFrY(0, nbNum c¢); /* Get the top left Y coordinate of the nmacrobl ock. */
if (temp !=0) /* If there are other nacrobl ocks above ... */
ctly = tenp - 16; / ... Set the starting Y coordinate of the search
wi ndow. */
el se

0; /* Oherwise the starting Y coordinate of the search windowis

*ctly

/* Set the bottomright coordi nates of the search w ndow. */
tenp = get FrX(15, mbNum c¢); /* Get the bottomright X coordinate of the
macr obl ock. */
if (tenmp !'= (nBequence.width - 1)) /* If there are other macrobl ocks on its right
*/
cbrx = tenp + 16; / ... Set the ending X coordinate of the search
w ndow. */
el se
cbrx = (nmBequence.width - 1); / Oherw se the ending X coordinate of the

search window is width-1. */

tenp = getFrY(15, nmbNum c); /* Get the bottomright Y coordinate of the
macr obl ock. */
if (temp !'= (nBequence. height - 1)) /* If there are other nacrobl ocks below ... */

110

cbry = tenp + 16; / ... Set the ending Y coordinate of the search
wi ndow. */
el se
cbry = (mBequence. height - 1); / OQherw se the ending Y coordinate of
the search window is height-1. */

[/printf("Frame: % Macrobl ock: % Search Wndow (%, %), (%, %)]\n", c-
>frFil enane, nmbNum *ctlx, *ctly, *cbrx, *cbry);

}

/**

** Function: voi d MIPEGoti onEsti mati on(struct MIPEGFranme* p, struct MIPEGFrane* c);
** Description: Perforns notion estimation between the current and previous frane.

** Paraneters: Two MIPEGFrane pointers p and ¢ to the previous and current frane.

** Return Val ue: NONE.

**/

voi d MJPEGoti onEsti mation(struct MIPEGFrane* p, struct MIPEGFranme* c)
{

int count, I, t, r, b, ih, iw jh, jw sad = -100, nx, ny, mnSAD = le+5, notion =
0, prevSAD = le+b;

struct MIPEGVAcrobl ock shift M;

char* sMde;

c->frMode = INTRA; /* The frane is initialized to I NTRA */

for (count = 0; count < nBequence.nunVBs; count ++)

{
set Sear chWndow(c, count, &, &, &, &b);

for (ih =1t; ih < (b - MBSIZE + 2); ih++)
{
for (iw=1; iw< (r - MBSIZE + 2); iwt+)
{
for (jh =0; jh < 16; jh++)
{
for (jw=0; jw< 16; jw+)
{
sad += get Abs(c-
>nb[count].mbValue[jw [jh] - p->frValue[iw + jwj[ih + jh]);

if ((sad < prevSAD) && (sad < mi nSAD))
{
m nSAD = sad; /* Keep the m ni num SAD val ue
found. */

prevSAD = sad,
sad = - 100;

}
/* Set notion vector. */
if (c->nmb[count].a > nmi nSAD - 500)
/* Macrobl ock satisfies the condition, INTER */

{
c->frMode = INTER, /* Mdtion found therefore frane is |INTER
c->nb[count] . mode = | NTER;
c->nb[count]. motionVector.xDiff = c->nmb[count].xBegin - nx;
c->nb[count]. mtionVector.yDiff = c->nmb[count].yBegin - ny;
if (c->nb[count].notionVector.xDiff < 0)
c->nb[count]. notionVector.sx = 1;
el se
c->nb[count]. notionVector.sx = 0;
if (c->nb[count].motionVector.yDiff < 0)
c->nb[count]. nmotionVector.sy = 1;
el se
c->nb[count]. notionVector.sy = 0;
}
el se
/* If not then the macroblock is | NTRA */
{
c->nb[count]. nobde = | NTRA;
c->nb[count]. notionVector.xDi ff = 0;
c->nb[count]. notionVector.yDiff = 0;
c->nb[count]. notionVector.sx = 0;
c->nb[count]. motionVector.sy = 0;
}

if (c->nb[count].npde == 0)
sMbde = "I NTRA";
el se
sMbde = "I NTER';
/* Initilize to a large value. */
prevSAD = le+b;
m nSAD = le+5;

motion = 0O;

*/

111

112

/**

** Function: int getAbs(int num;

** Description: Sets an absolute value of a nunber.
** Paraneters: An integer num

** Return Value: The absol ute val ue of num

*% [

int getAbs(int num

{
/* Return an absol ute value. */
if (num< 0)
return (-num;
el se
return num
}
/**
** Function: voi d MIPEGset Resi dual Matri x(int nmbNum struct MPEG-ranme* p,
x struct MIPEGFrane c);
** Description: Sets the residual matrix of an | NTER nacrobl ock.
It uses the current
** macr obl ock and the best nuch found by notion estinmation in the previous
*x frame.
** Parameters: A macrobl ock mbNum Two MIPEGFranme pointers p and ¢ to the previous
** and current frane.
** Return Val ue: NONE.
*x

voi d MIPEGset Resi dual Matrix(int mbNum struct MIPEGFrane* p, struct MIPEGFrame* c)
{

int ih, iw

for (ih = 0; ih < MBSIZE;, ih++)

{
[lprintf("\n");
for (iw=0; iw< MSIZE, iw++)
{
c->nb[mbNunj . rMatrix[iwj[ih] =
c->nb[nmbNunj . nbVval ue[iwj[ih] -
p- >nb[mbNunj . mbVal ue[iw - c->nb[nbNunj . noti onVector.xDiff][ih -
c->nb[mbNuny . noti onVector.yDi ff];
[lprintf("98d ", c->nmb[nbNuni.rMatrix[iw/[ih]);
}
}
}
IEL

** Function: doubl e get C(int nunj;

** Description: Calculates the value of the C coefficient needed by the DCT.

** Paraneters: An integer val ue num
** Return Value: The DCT C coefficient.

*% [

doubl e get C(int num

{
/* Standard DCT C coefficient rule. */
if (num == 0)
return (1.0 / sqrt(2.0));
el se
return 1.0;
}
[*x
** Function: voi d MIPEGdct (i nt mbNum struct MIPEGFrane* c);

** Description: Calculates the DCT values of a 16 by 16 macrobl ock.

** Parameters: A macrobl ock mbNum An MIPEGFrame pointer c to the current frame.
** Return Val ue: NONE

*% [

voi d MIPEGdct (i nt mbNum struct MPEGFrane* c)

{

16.0));

int u, v, i, j;

doubl e tenp;

/* Standard DCT transformation formula. */
for (v = 0; v < MBSIZE;, v++)

113

{
for (u=0; u < MBSIZE, u++)
{
for (i =0; i < MBSIZE, i++)
{
for (j =0; j < MBSIZE, j++)
{
temp += (c->nb[nbNunmi.rMatrix[i][j] *
cos((2.0 * i +1.0) * (u* Pl) / 16.0) *
cos((2.0 * j +1.0) * (v=*Pl) [/
}
}
/* Store each DCT val ue obtained. */
c->nb[mbNunj . dct Matrix[u][v] = tenp * (0.25 * getC(u) * getC(v));
temp = 0.0;
/* Qutput */
[lprintf("%1f\t", c->nb[nbNuni.dctMatrix[u]l[Vv]);
}

/* Qutput */

| **
* %
* %
* %
* %

**/

[lprintf("\n");

Functi on:
Descri ption:
Par aneters:
Return Val ue:

voi d MIPEGguanti zati on(int nmbNum struct MIPEGFranme* c);
Perforns quantization to the DCT val ues of the macrobl ock.

A macrobl ock mbNum An MIPEGFrane pointer ¢ to the current frane.
NONE.

voi d MIPEGuanti zati on(int mbNum struct MIPEGFranme* c)

{

| **
* %
* %
* %
* %

* % [

int ih, iw
double Q=5.0; /* Qis set to 5. */

for (ih =0; ih < MBSIZE; ih++)

for

{
{
}
}
Functi on:
Descri pti on:

Par aneters:
Return Val ue:

(iw=0; iw< MBSIZE, iwt+)

/* Divide all values by (2*Q). */

114

c->nb[mbNuni . gMatri x[iwj [i h]
= (int)(c->nb[nmbNuni.dctMatrix[iwi[ih] / (2.0 * Q);

voi d MIPEGzi gzag(int nbNum struct MIPEGFrame* c);

Transfornms a 2-D matrix to a 1-D matrix using the zig-zag nethod.
A macrobl ock mbNum An MIPEGFrame pointer c to the current frame.
NONE.

voi d MIPEGzi gzag(int nbNum struct MIPEGFranme* c)

{

/* Index of value coordinates inside the 2-D matrix to be followed. */

int zzIndex[256][2] = { 0,0, 1,0, 0,1, 0,2,
1,1, 2,0, 3,0, 2,1,
1,2, 0, 3, 0, 4, 1, 3,
2,2, 3,1, 4,0, 5,0,
4,1, 3,2, 2,3, 1,4,
0, 5, 0, 6, 1,5, 2,4,

3,3 4,2, 5,1, 6, 0,

7,0, 6,1, 5, 2, 4, 3,

3,4, 2,5, 1,6, 0,7,

0, 8, 1,7, 2,6, 3,5,

4, 4, 5,3, 6, 2, 7,1,

8,0, 9,0, 8,1, 7
6, 3, 5, 4, 4,5, 3,6,

115

2,7, 1,8, 0,9, 0, 10,
1,09, 2,8, 3,7, 4,6,
5,5, 6, 4, 7,3, 8, 2,
9,1, 10, 0, 11,0, 10, 1,
9,2, 8, 3, 7,4, 6,5,
5,6, 4,7, 3,8, 2,9,
1, 10, 0, 11, 0,12, 1,11,
2,10, 3,9, 4,8, 5,7,
6, 6, 7,5, 8, 4, 9,3,
10, 2, 11,1, 12,0, 13,0,
12,1, 11, 2, 10, 3, 9, 4,
8,5, 7,6, 6,7, 5,8,
4,9, 3,10, 2,11, 1,12,
0, 13, 0, 14, 1,13, 2,12,
3,11, 4,10, 5,9, 6, 8,
7,7, 8, 6, 9,5, 10, 4,
11, 3, 12, 2, 13,1, 14,0,
15, 0, 14,1, 13, 2, 12,3,
11, 4, 10, 5, 9,6, 8,7,
7,8, 6,9, 5, 10, 4,11,
3,12, 2,13, 1, 14, 0, 15,
1, 15, 2,14, 3,13, 4,12,
5,11, 6, 10, 7,9, 8, 8,
9,7, 10, 6, 11, 5, 12, 4,
13, 3, 14, 2, 15,1, 15, 2,
14, 3, 13, 4, 12,5, 11,6,
10, 7, 9,8, 8,9, 7,10,
6,11, 5,12, 4,13, 3, 14,
2,15, 3, 15, 4,14, 5,13,
6,12, 7,11, 8, 10, 9,9,
10, 8, 11,7, 12, 6, 13,5,
14, 4, 15, 3, 15, 4, 14,5,
13, 6, 12,7, 11, 8, 10,9,
9, 10, 8,11, 7,12, 6, 13,
5, 14, 4,15, 5, 15, 6, 14,
7,13, 8,12, 9, 11, 10, 10,
11,9, 12, 8, 13,7, 14,6,
15, 5, 15, 6, 14,7, 13, 8,
12,9, 11, 10, 10, 11, 9,12,
8,13, 7,14, 6, 15, 7,15,
8, 14, 9, 13, 10, 12, 11,11,
12, 10, 13,9, 14, 8, 15,7,
15, 8, 14,9, 13, 10, 12,11,
11, 12, 10, 13, 9, 14, 8, 15,
9, 15, 10, 14, 11, 13, 12,12,
13, 11, 14, 10, 15,9, 15, 10,

14,11, 13,12, 12, 13, 11, 14,
10, 15, 11, 15, 12, 14, 13, 13,

116

14,12, 15, 11, 15, 12, 14, 13,
13, 14, 12, 15, 13, 15, 14, 14,
15, 13, 15, 14, 14, 15, 15,15 };

int iw, count = 0;

for (iw=20; iw< (MBSIZE * MBSI ZE); i wt+)

{
/* Set the zig-zag matrix by follow ng the index coordi nates. */
c->nmb[mbNunj . zzMatri x[count] =
c->nmb[mbNunj . gMat ri x[zzl ndex[iw] [0]][zzl ndex[iw] [1]];
count ++;
}
c->nb[mbNunj . zzMatri x[count] = -1;
}
/**
** Function: voi d MIPEG unLengt h(int nmbNum struct MIPEGFrane* c);
** Description: Performrun Iength coding on the zig-zag matrix.
** Parameters: A macrobl ock mbNum An MIPEGFrame pointer c to the current frame.
** Return Val ue: NONE.
**/

voi d MIPEGrunLengt h(int nbNum struct MIPEGFranme* c)
{

int i =0, j, prev, curr, seq = 0, count = 0, index = 0;

c->nb[mbNunj . runLengt h[i ndex] [LEVEL] = prev = c->nb[nbNunj.zzMatrix[0]; /* Set
first value ... */

c->nb[mbNunj . runLengt h[i ndex] [RUN] = O;
c->nmb[mbNunj . runLengt h[i ndex] [LAST] = 0;

for (j =0; j < 103; j+4)

{

if ((c->nmb[nbNunj.runLength[index][RUN] == Tabl e3DVL(j][RUN]) &&

(get Abs(c->nb[nbNunj . runLengt h[i ndex] [LEVEL]) == Tabl e3DVL(j][LEVEL]) &&

(c->nb[mbNunj . runLengt h[i ndex] [LAST] == Tabl e3DVL{ j] [LAST]))

{
c->nb[mbNunj . runLengt h[i ndex] [CODEW =
MIPEGset VLC(c- >nmb[mbNunj . runLengt h[i ndex] [LEVEL], Tabl e3DVL{ j][CODEW);
}
}

[/ printf("##index=%3d run = %\t last = %\t |level = % code =%\n", index,

I c->nb[mbNunj . runLengt h[i ndex] [RUN] ,

I c->nb[mbNunj . runLengt h[i ndex] [LAST],

11 c->nb[mbNunj . runLengt h[i ndex] [LEVEL] ,

/1 c->nb[nbNunj . runLengt h[i ndex] [CODEW) ;
i ndex++;

/* ... go on with the rest. */

do
{
i ++;
curr = c->nmb[mbNunj . zzMatrix[i];
if (prev == 0)
{
seq = 1;
count ++;
prev = curr;
}
if (curr 1'=0)
{
if (i == 255)
/* Set the indication of |ast value. */
c->nb[mbNunj . runLengt h[i ndex] [LAST] = 1;
el se
c->nb[mbNunj . runLengt h[i ndex] [LAST] = 0;

c->nb[nbNunj . runLengt h[i ndex] [RUN] = count;
c->nb[mbNunj . runLengt h[i ndex] [LEVEL] = curr;

for (j =0; j < 103; j++)
{
if ((c->nb[mbNunj.runLength[index] [RUN] ==
Tabl e3DVLCj][RUN]) &&
(get Abs(c-
>nb[mbNun . runLengt h[i ndex] [LEVEL]) == Tabl e3DVL(]j][LEVEL]) &&
(c->nb[nbNunj . runLengt h[i ndex] [LAST] ==
Tabl e3DVLC[j] [LAST]))

c->nb[mbNunj . runLengt h[i ndex] [CODEW =
MIPEGset VLC(c- >nb[nbNum . runLengt h[i ndex] [LEVEL], Tabl e3DVL(j][CODEW);

117

}
}
if (i == 256)
{
c->nb[mbNuni . runLengt h[i ndex] [CODEW = 3;
c->nmb[mbNunj . runLengt h[i ndex] [LAST] = 1;
}
11 printf("##i ndex=9%8d run = %\t last = %\t |level = % code =%\n",
i ndex,
I c->nb[mbNunj . runLengt h[i ndex] [RUN] ,
I c->nb[mbNunj . runLengt h[i ndex] [LAST],
I c->nb[mbNunj . runLengt h[i ndex] [LEVEL] ,
I c->nb[mbNunj . runLengt h[i ndex] [CODEW) ;
i ndex++;
count = O;

prev = curr;

/

{

/

118

}
else if (curr == 0)
{
prev = curr;
}
}
while (i != 256);
* %
** Function: int MIPEGsetVLC(int rl, int vlc);
** Description: Sets a correct code word. Function checks whether the level is
> positive or negative gives s the appropriate value and cal cul ates
*x the code word.
** Parameters: The level rl and the vlic value of the 3D-VLC table.

** Return Value: The cal cul ated code word.

* % [

nt MIPEGset VLC(int rl, int vlc)

int s;
if (rl >=0)
{
s =0;
vic = vlc << 1; /* Shift one position. */
}
el se
{
vlc = abs(vlc);
s = 1;
/* Shift one position and add one. */
vic = vlc << 1;
vl c++;
}
return vlc;
*x
** Function: char* MIPEGset Fi | enane(char* c);

** Description: Take the filename of the current frane and construct the

*x appropriate notion JPEG fil enane.

** Paraneters: The filename of the current frame c.
** Return Value: The notion JPEG fil enane.

**/

char* MIPEGset Fi | enane(char* c)

{

119

int i, dotPosition;
char curr[24];

char* nane;

dot Position = strcspn(c, "."); /* Find the first dot in the fil ename. */
for (i =0; i < dotPosition; i++)
curr[i] = c[i]; /* Take the part before the dot. */
curr[i] ="'\0";
strcat(curr, “.ng"); /* Make notion JPEG fil enane. */

strcpy(name, curr);

return nane;

}

/**

** Function: voi d MIPEGm it eFranme(struct MIPEGFranme* c, char node, char* nane);
** Description: Makes a notion JPEG file.

** Paraneters: An MIPEGFranme pointer c to the current frane. The node of the frame
*x and the output filenane.

** Return Val ue: NONE.

**/

void MIPEGwm it eFrane(struct MIPEGFrane* c, char node, char* nane)

{

FILE* fpMIPEG /* The Qutput Mtion JPEGfile. */

char identity[5] = "MIPEG';

char mMmD="M;

int count, i, codew, run, last, nbMde, xv, yv, Xs, ys;
/1 printf("MPEGwiteFrame\n");

f pMIPEG = fopen(nane, "wb"); /* Create a binary file for witing. */
/* Wite MIPEG identity. */
fwite(& dentity, sizeof(char[5]), 1, fpMPEG;
/* Wite whether the frane is INTRA=0 or |INTER=1. */
fwite(&rmode, sizeof(char), 1, fpMIPEG;

for (count = 0; count < mBequence.nunVBs; count ++)
{
if (c->nb[count].nmde == | NTER)
{
/* Wite Macroblock Identifier, M*/
fwite(& D, sizeof(char), 1, fpMPEG;
/* Wite that frame is I NTER=1. */
nmbMode = 1;
fwite(&mbMde, sizeof(char), 1, fpMIPEG;

XS = c->nb[count]. notionVector. sx;

| **
* %
* %
* %

* %

fwite(&xs, sizeof(char), 1, fpMIPEQ;

xv = get Abs(c->nb[count]. moti onVector.xDiff);
fwite(&xv, sizeof(char), 1, fpMIPEG;

ys = c->nb[count]. notionVector. sy;
fwite(&s, sizeof(char), 1, fpMIPEQ;

yv = get Abs(c->nb[count]. moti onVector.yDiff);
fwite(&v, sizeof(char), 1, fpMIPEQ;

= -1
do
{
i ++;
/* Wite RUN information. */
run = c->nb[count].runLength[i][RUN];
fwite(& un, sizeof(char), 1, fpMIPEG;
/* Wite LEVEL information. */
codew = c->nb[count].runLength[i][CODEW ;
fwrite(&odew, sizeof(char), 1, fpMPEG;
/* Wite LAST information. */
last = c->nb[count].runLength[i][LAST];
fwite(& ast, sizeof(char), 1, fpMIPEG;
/1 printf("i = 9%l run = %d codew = %d |ast = %d\n",
11 i, run, codew, last);
}
while (c->nb[count].runLength[i][LAST] == 0);
}
el se
{

/* Wite Macroblock ldentifier, M*/

fwite(& D, sizeof(char), 1, fpMPEG;

/* Wite that frame is | NTRA=0. */
nmbMode = 0;

fwite(&mbMde, sizeof(char), 1, fpMIPEG;

}

fcl ose(f pMIPEG ;

Functi on:
Descri ption:
Par aneters:
Return Val ue:

void MIPEGm it eFirstFrame(struct MIPEGFrame* c, char* nane);

Makes a notion JPEG file fromthe first frame in the sequence.

An MIPEGFranme pointer ¢ to the current frane and the output filenane.
NONE.

120

121

voi d MIPEGw i teFirstFrame(struct MIPEGFrame* c, char* nane)
{
FI LE* fpMIPEG /* The CQutput Mtion JPEG file. */
char identity[5] = "MPEG';
char mMmD="M;
int node =0, count, i, j, nbMdde = 0, val ue;

[/printf("MPEGwMiteFirstFrame\n");
f pMIPEG = fopen(nane, "wb"); /* Create a binary file for witing. */
/* Wite MIPEG identity. */
fwite(& dentity, sizeof(char[5]), 1, fpMPEG;
/* Wite INTRA information. */
fwite(&mde, sizeof(char), 1, fpMPEG;

for (count = 0; count < mBequence. nunmVBs; count ++)
{

/* Wite Macroblock Identifier, M*/
fwite(& D, sizeof(char), 1, fpMPEG;

/* Wite that frame is | NTRA=0. */
fwrite(&bMde, sizeof(char), 1, fpMIPEG;

for (j =0; j < MBSIZE;, j++)
{
for (i =0; i < MBSIZE;, i++)

/* Wite RUN information. */
val ue = c->nb[count].nbValue[i][]j];
if (value > 255)

val ue = 255;
fwite(&val ue, sizeof(char), 1, fpMPEG;
[lprintf("### = 9%] = % value = %\ n",
I1i, j, value);

fcl ose(f pMIPEG) ;

File: mjpeqgdec.c

/**

** Modul e: nj pegdec.c: Mdtion JPEG Decoder.

*% [

122

#i ncl ude "nj peg. h"
#i ncl ude <stdio. h>
#i ncl ude <math. h>

/* 3D VLC Table (H 263). */
int Tabl el nv3DVLC[103][5] = {
/* Last, Run, Level, Bits, Code Wrd */

o, o0 1, 3, 2,

0o, 0 2, 5 15
o, o0 3 7, 21,
o, 0, 4, 8, 23
o, 0 5 9, 31,
o, 0, 6, 10, 37,
o, o 7, 10, 36,

, 0, 8, 11, 33,
, 0, 9, 11, 32,

o, 0, 10, 12, 7,

o, 0, 11, 12, 6,

0, 0, 12, 12, 32,
o, 1, 1, , 6

o, 1, 2, , 20,
o, 1, 3 , 30,
0, 1, 4, 11, 15,
o, 1, 5, 12, 33,
o, 1, 6, 13, 80,
o, 2, 1, , 14,
0, 2, 2 , 29,
0, 2, 3, 11, 14,
0, 2, 4, 13, 81,
o, 3, 1, 6, 13,
o, 3, 2, 10, 35,
o, 3, 3, 11, 13,
0, 4, 1, 6, 12,
0, 4, 2, 10, 34,
0, 4, 3, 13, 82,
o, 5 1, 6, 11,
0, 5, 2, 11, 12,
0, 5 3, 13, 83,
o, 6, 1, 7, 19,
o, 6, 2, 11, 11,
0, 6, 3, 13, 84,
o, 7, 1, 7, 18,
o, 7, 2, 11, 10,
o, 8, 1, 7, 17,
o, 8, 2, 11, 9,

o, 9 1, 7, 16,
0 9 2 11, 8,

123

N W d o
N ® q
N NN
© < © ©
— & A«
© o + o
D I B B |

c o o o

~N o N o O
N MmO M MmO ™

.o o o o
o A A A -«

1

1,
1,
1,
1,

14,
15,
16,
17,
18,

©c o o o o

10, 29,

1,

19,

28,
27,
26,
34,
35,

10,
10,
10,
12,
12,

1,
1,
1,
1,
1,

20,
21,
22,
23,
24,

© o o oo

1, 13, 86,

25,

20,
19,
18,
17,

87,
25,
15,
14,
13,
12,
19,
18,
17,
16,
26,
25,
24,
23,
22,
20,
19,
24,
23,
22,
21,

~ n < ~ ©
m .ooN -.N - o o o'V o .+00 0C0CcO0coco o dd
4 0 A AN~ A N~NNDNO®OWO®O O OO O O O O O O 0 A A A A A A A A A A
A d N M AN A

26,
0,
0,
0,
1,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,

O d d ddddddddddoadadoadoadoadoadoaddodododdddddddd

124

1, 27, 1, 11, 5,

1, 28, 1, 11, 4,

1, 29, 1, 12, 36,

1, 30, 1, 12, 37,

1, 31, 1, 12, 38,

1, 32, 1, 12, 39,

1, 33, 1, 13, 88,

1, 34, 1, 13, 89,

1, 35, 1, 13, 90,

1, 36, 1, 13, 91,

1, 37, 1, 13, 92,

1, 38, 1, 13, 93,

1, 39, 1, 13, 94,

1, 40, 1, 13, 95,

-1, -1, -1, 7, 3 b
/**
** Function: voi d MIPEGset Virtual MBs(char* filenane);
** Description: Take the first Mtion JPEG frame given read it and set
** the values of the virtual frame as macrobl ock val ues.
** Paraneters: The filename of the current frane.
** Return Val ue: NONE.
**/

voi d MIPEGset Vi rtual MBs(char* fil enane)

{
int iw, ih, index =0, i;
unsi gned char* dat a;
for (i = 0; i < nBequence.nunm\VBs; i ++)
{
i ndex = 0;
data = MIPEGget Virtual Val ues(i, filename);
for (ih =0; ih < MBSIZE; ih++)
{
for (iw=0; iw< MSIZE, iwt+)
{
/* Set virtual macrobl ock. */
vi.vMB[i].value[iw[ih] = data[index];
i ndex++;
}
}
}
}
IEL
** Function: unsi gned char* MIPEGget Vi rtual Val ues(int nbNum char* fil enane);

** Description: Read franme and get nacrobl ock val ues.

** Paraneters: The macrobl ock needed and the filenane of the frane.

** Return Val ue: The nacrobl ock val ues.

*% [

unsi gned char* MIPECGget Virtual Val ues(i nt mbNum char* fil enane)

fp);

{
FI LE* fp;
unsi gned char tenpbDat a;
int i =0, count = -2, line = 0;
long index = -1;
unsi gned char d[512];
if ((fp = fopen(filenane, "rb")) == NULL)
{
printf("Cannot open file\n");
exit(1);
}
do
{
i ndex++;
fread(& enpData, sizeof(char), 1,
if (tenpData == 77) /* if 'M macrobl ock reached. */
count ++;
}
while (count !'= nbNun);
i ndex += 2;
fseek(fp, index, SEEK SET);
fread(&d, sizeof(char), 256, fp);
fclose(fp);
return d;
}
xx
** Function: voi d MIPEGset MBPosi ti ons(void);

** Description: Set the virtual macroblocks starting coordinates.

** Parameters: NONE.

** Return Val ue: NONE.

**/
voi d MIPEGset MBPosi ti ons(voi d)
{

int i, indexX = 0, indexY = -16, countx =

for (i = 0; i < nBequence.nunVBs; i ++)

{

-1, county = -1,

125

126

if (countx < (nBequence.numvbh - 1))

{
count x++;
i ndexY += 16;
}
el se
if (countx == (nBequence.nunmvbh - 1))
{
countx = 0;
i ndexX += 16;
i ndexY = 0;
}
/* Set starting x, y coordinates. */
vi.vMB[i].xInit = indexX;
vi.vMB[i].ylnit = indexY,;
[lprintf("MB: % (%, %)\n", i, vi.vMB[i].ylnit, vi.vMB[i].ylnit);
}
}
IEL
** Function: voi d MJIPEGvakeRawFr ane(voi d);

** Description: Convert macrobl ock coordinate values to frane coordi nate val ues.
** Parameters: NONE.
** Return Val ue: NONE.
**/
voi d MIPEGrakeRawFr ane(voi d)
{
int i, w, h, nbCount = O;

for (i = 0; i < nBequence.nunm\VBs; i ++)
{

for (h = 0; h < 16; h++)

{
for (w=0; w< 16; w++)
{
vi.rawfw + vf.vMB[i].xInit][h + vf.vMB[i].ylnit] =
vi.vMB[i].value[w[h];
}
}
}
}
/**
** Function: char* MIPEGset Decoder Fi | enane(char* c);

** Description: Set the proper filenane of the decoded frane.
** Paraneters: The notion JPEG frane fil enane.
** Return Value: The decoded frane fil enane.

127

**/

char* MIPEGset Decoder Fi | enane(char* c)

{
int i, dotPosition;
char curr[24];
char* nane;
name = malloc(24 * sizeof(char));
dotPosition = strcspn(c, "."); /* Find the first dot in the fil ename. */
for (i =0; i < dotPosition; i++)
curr[i] = c[i]; /* Take the part before the dot. */
curr[i] ="'\0";
strcat(curr, ".ra0"); /* Make raw filenanme. */
strcpy(name, curr);
return name;
}
J*x
** Function: void MIPEGmiteVirtual Frame(char* fil enane);

** Description: Create decoded frane and wite data.

** Paraneters: The decoded frane fil enane.
** Return Val ue: NONE.
**/

void MIPEGwm i teVirtual Frane(char* fil ename)

{
FILE* fp;
int ih, iw
unsi gned char tenp;
if ((fp = fopen(filenane, "wbh")) == NULL)
{
printf("Cannot open file\n");
exit(1);
}
for (ih = 0; ih < nBequence. hei ght; ih++)
{
for (iw= 0; iw < nBequence.w dth; iw+)
{
temp = vi.rawfiw[ih];
fwrite(& enp, sizeof(unsigned char), 1, fp);
}
}
fclose(fp);
}
/**

** Function: voi d MIPEGget MBVbdes(char* fil enane);

** Description:
* %

** Paraneters:
** Return Val ue:

*% [

Read a Mdtion JPEG frane and take the data
of any | NTER macr obl ock.

The Motion JPEG franme fil enane.

NONE.

voi d MIPEGget MBMbdes(char* fil enane)

{

/

int i, size, count = -1, j;

unsi gned char* dat a;

data = MIPEGget FranmeVal ues(fil enane, &size);

5, i < (size - 1); i++)

if (data[i] == 77)

for (i =
{
{
}
}

* %

** Function:

* %

** Description:
** Paraneters:

* %

** Return Val ue:

*% [

count ++;
df . dMB[count].node = data[i + 1];
if (df.dMB[count].npde == 1)

{
df .dMB[count].xs = data[i + 2];
df .dMB[count].xv = data[i + 3];
df .dMB[count].ys = data[i + 4];
df .dMB[count].yv = data[i + 5];
j =i + 6
do
{
df .dMB[count].data[j - (i + 6)] = data[j];
j
}
while (data[j] != 77);
df .dMB[count].size = - (i + 6);
}

unsi gned char* MIPEGget FraneVal ues(char* fil enane,
int* size);

Read a Mdtion JPEG frane and take the contained data.

The Modtion JPEG frame fil ename and the nunber

of val ues read.

The frane data read.

unsi gned char* MIPEGget FraneVal ues(char* filename, int* size)

{

FILE* fp;

128

129

unsi gned char node = 0, data, ch[4048];
int i =0;

if ((fp = fopen(filenane, "rb")) == NULL)

{
printf("Cannot open file\n");
exit(1);

}

do

{
data = 0;
fread(&data, sizeof(char), 1, fp);
ch[i] = data;
i ++;

}

while (!feof(fp));

fclose(fp);
*size =i,
return ch;
}
/**
** Function: voi d MIPEGget VLC(int vlc, int* pos, int* neg);
** Description: Calculates the possible values of a code word.
** Parameters: The code word and its positive and negative val ues obt ai ned.
** Return Val ue: NONE.
**/

voi d MIPEGget VLC(int vlc, int* pos, int* neg)

{
pos = vlc << 1; / Shift one position. */
vlc = abs(vlc);
/* Shift one position and add one. */
vic = vlc << 1;
vl c++;
*neg = vlc;
}
/**
** Function: voi d MIPEG nvRunLengt h(int nmbNun;

** Description: Performinverse run |length coding on the Mdtion JPEG data.

** Parameters:
** Return Val ue:

*% [

A nmacr obl ock mbNum
NONE.

voi d MIPEG nvRunLengt h(i nt mbNum)

node,

130

match, nmp, m;

data[i]; /* RUN */
data[i + 1]; /* LEVEL */
data[i + 2]; /* LAST */
&negCode) ;

== Tabl el nv3DVLJj][1])

== Tabl el nv3DVLJj][0])

== posCode) ||
== negCode))

k++)

= Tabl el nv3DVLC] mat ch] [2] ;

{
int i, j, k, index = -1, zzlndex = negCode, posCode,
for (i = i < df.dMB[mbNunj . si ze;
{
i ndex++;
df . dMB[mbNunj . runLengt h[i ndex] [0] = df.dMB[nbNunj.
df . dMB[mbNuni . runLengt h[i ndex] [1] = df.dMB[nbNunj.
df . dMB[mbNunj . runLengt h[i ndex] [2] = df.dMB[nbNunj.
for (j =0; j <103; j++)
{
MIPEGget VLC(Tabl el nv3DVL{ j][4], &posCode,
if (
(df . dMB[mbNun . runLengt h[i ndex] [0]
&% /* RUN */
(df . dMB[mbNunj . runLengt h[i ndex] [2]
&% [* LAST */
((df . dMB[mbNunj . runLengt h[i ndex] [1]
(df . dMB[mbNuny . runLengt h[i ndex] [1]
)
{
match = j;
np = posCode;
m = negCode;
}
}
if (df.dMB[nbNunj.runLength[index][0] != 0)
{
for (k = 0; k < df.dMB[mbNunj . runLength[index][0];
{
df . dMB[mbNunj . zi gzag[zzl ndex] = 0;
zz|l ndex++,
}
}
if (df.dMB[nbNunj.runLength[index][1] == np)
{
df . dMB[mbNuni . zi gzag[zzI ndex]
zz|l ndex++,
}
if (df.dMB[nbNunj.runLength[index][1] == mm)

131

{
df . dMB[mbNunj . zi gzag[zzl ndex++] = -Tabl el nv3DVLC] natch][2];
zz| ndex++;
}
}
}
[*x
** Function: voi d MIPEG nvZi gzag(int nmbNum;
** Description: Performinverse zig-zag on the Mtion JPEG data.
** Paraneters: A macr obl ock mbNum
** Return Val ue: NONE.
Y

voi d MIPEG nvZi gzag(int nbNum

{
/* Index of value coordinates inside the 2-D matrix to be followed. */
int zzIndex[256][2] = { 0,0, 1, 0, 0,1, 0, 2,
1,1, 2,0, 3,0, 2,1,
1, 2, o, 3, 0, 4, 1,3,
2,2, 3,1, 4,0, 5,0,

4,1, 3,2, 2,3, 1,4,
0,5, 0, 6, 1,5, 2,4,
3,3, 4,2, 5,1, 6,0,
7,0, 6,1, 5, 2, 4,3,
3,4, 2,5, 1, 6, 0,7,
o, 8, 1,7, 2,6, 3,5,
4,4, 5,3, 6, 2, 7,1,
8,0, 9,0, 8,1, 7,2,
6, 3, 5,4, 4,5, 3, 6,
2,7, 1, 8, 0,9, 0, 10,
1,9, 2,8, 3,7, 4,6,
5,5, 6, 4, 7,3, 8, 2,
9,1, 10, 0, 11, 0, 10, 1,
9, 2, 8, 3, 7,4, 6,5,
5,6, 4,7, 3,8, 2,9,

1, 10, 0, 11, 0,12, 1,11,

2,10, 3,9, 4,8, 5,7,
6, 6, 7,5, 8, 4, 9,3,

10, 2, 11,1, 12,0, 13,0,

12,1, 11, 2, 10, 3, 9, 4,
8,5, 7,6, 6,7, 5,8,
4,9, 3,10, 2,11, 1,12,

0, 13, 0, 14, 1, 13, 2,12,

3,11, 4,10, 5,9, 6, 8,

7,7, 8, 6, 9,5, 10, 4,

11, 3, 12, 2, 13,1, 14, 0,

15, 0, 14, 1, 13, 2, 12, 3,

11, 4, 10, 5, 9,6, 8,7,

7,8,

3,12,

1, 15,

5,11,

9,7,

13, 3,

14, 3,

10, 7,

6,11,

2,15,

6,12,

10, 8,

14, 4,

13, 6,

9, 10,

5, 14,

7,13,

11,9,

15, 5,

12,9,

8, 13,

8, 14,

12,10

15, 8,

11,1

9, 15,
13, 11,
14, 11,
10, 15,
14,12,
13, 14,
15, 13,

int iw, count = O;

for (iw=0; iw< 256; iw+)

6,9, 5, 10,
2,13, 1, 14,
2,14, 3,13,
6, 10, 7,9,
10, 6, 11,5,
14, 2, 15,1,
13, 4, 12,5,
9, 8, 8,9,
5,12, 4,13,
3, 15, 4,14,
7,11, 8, 10,
11,7, 12, 6,
15, 3, 15, 4,
12,7, 11,8,
8, 11, 7,12,
4,15, 5, 15,
8,12, 9,11,
12,8, 13,7,
15, 6, 14,7,
11, 10, 10, 11,
7, 14, 6, 15,
9,13, 10, 12,
) 13,9, 14,8
14,9, 13, 10,
2, 10, 13, 9,1
10, 14, 11,13,

14, 10, 15,9,

13,12, 12, 13,
11, 15, 12, 14,
15, 11, 15, 12,
12, 15, 13, 15,
15, 14, 14, 15,

dex[iw[1]] =

4,11,
0, 15,
4,12,
8,8,
12, 4,
15, 2,
11, 6,
7, 10,
3, 14,
5,13,
9,9,
13, 5,
14, 5,
10, 9,
6,13,
6, 14,
10, 10,
14, 6,
13, 8,
9,12,
7,15,
11, 11,
, 15, 7,
12, 11,
4, 8, 15,
12, 12,
15, 10,
11, 14,
13, 13,
14,13,
14, 14,
15, 15 };

{
/* Set the quantization matrix by follow ng the index coordinates. */
df . dMB[mbNuni . gMat ri x[zzl ndex[iw][0]][zzln
df . dMB[mbNuni . zi gzag[count];
count ++;
}
}
xx
** Function: voi d MIPEQ nvQuanti zation(int nbNum;

** Description: Performinverse quantization on the Mt
** Paraneters: A macr obl ock mbNum

i on JPEG dat a.

132

133

** Return Val ue: NONE.

**/

voi d MIPEG nvQuanti zation(int nmbNum

{
int ih, iw
double Q=5.0; /* Qis set to 5. */
for (ih =0; ih < 16; ih++)
{
for (iw=0; iw< 16; iwt+)
{
/* Multiply all values by (2*Q). */
df . dMB[mbNunj . dct[iw] [i h] = (double) (df.dMB[nbNuni.gMatrix[iw[ih]
* (2.0 * Q);
}
}
}
IEL
** Function: voi d MIPEG nvDct (i nt nbNum ;
** Description: Performinverse DCT on the Mtion JPEG data.
** Paraneters: A macr obl ock nmbNum
** Return Val ue: NONE.
**/

voi d MIPEG nvDct (i nt nbNum
{
int u v, i, j;

doubl e tenp;

for (j =0; j < 16; j++)

for (i =0; i < 16; i++)

for (u=20; u< 16; u++)
{
for (v = 0; v < 16; v++)

{

tenp += (df.dMB[mbNumj.dct[u][v] * getC(u) * getC(v)

cos((2.0 * i +1.0) *
(u* Pl) / 16.0) *

cos((2.0* j +1.0) * (v * Pl) / 16.0));
}

134

df . dVB[mbNunj . i Matrix[i][j] = tenp * 0. 25;

temp = 0.0;
}
}
}
/**
** Function: voi d MIPEGget Resi dual Matri x(int nbNun;
** Description: Get the residual matrix of the macrobl ock.
** Paraneters: A macr obl ock mbNum
** Return Val ue: NONE.
**/

voi d MIPEGget Resi dual Matri x(int nmbNum

{
int ih, iw, xVector, yVector;
if (df.dMB[nmbNuni.xs > 0)
xVector = df.dMB[mbNunj . xv;
el se
xVector = - df.dMB[mbNunj . xv;
if (df.dMB[mbNunj.ys > 0)
yVector = df.dMB[nbNuni . yv;
el se
yVector = - df.dMB[nbNunj.yv;
for (ih =0; ih < MBSIZE; ih++)
{
for (iw=0; iw< MSIZE, iw++)
{
df . dMB[mbNunj . rawMatri x[iw [i h] =
df . dMB[mbNunj . i Matrix[iw[ih] +
vi.rawfiw + vf.vMB[nmbNunj.xInit + xVector][ih + vf.vMB[nbNunj.ylnit
+ yVector];
if (df.dMB[mbNuni.rawvatrix[iw [ih] > 255)
df . dMB[mbNunj . rawivat ri x[iw [i h] = 255;
if (df.dMB[nmbNunmi.rawvatrix[iw][ih] < 0)
df . dMB[mbNunj . rawivatri x[iwj[i h] = 0;
}
}
}
/**
** Function: voi d MIPEGupdat eVi rtual Frame(int nmbNunj;

** Description: Update virtual matrix to current data.
** Paraneters: A nmacr obl ock mbNum
** Return Val ue: NONE.

**/

voi d MIPECupdat eVi rtual Frame(int mbNum

i+t

< 16;

{
int i, j;
[fprintf("\n\n\n");
for (j =0; j < 16;
{
printf("\n");
for (i = 0;
{

vf. vMB[mbNunmi . val ue[i][j]

i ++)

[lprintf("93d ",

vi.rawfi

vf.vMB[mbNunji . val ue[i][j];
}
}
}
[**

** Function:

** Parameters: The notion JPEG frane fil enane.
** Return Value: The raw frane fil enane.

*% [

char* MIPECGget PSNRFi | enane(char* c¢)

strcat(curr, ".raw'); /* Make raw fil enane.

{
int i, dotPosition;
char curr[24];
char* nane;
nane = nalloc(24 * sizeof(char));
dot Position = strcspn(c,
for (i = 0; i < dotPosition;
curr[i] =c[i];
curr[i] ="'\0";
strcpy(name, curr);
return nane;
}

doubl e get FAbs(doubl e num)
{
if (num>= 0.0)
return num
el se

return -num

doubl e MJIPEGcal cul at ePSNR(char* f)

char* MIPECGget PSNRFi | enane(char* c);
** Description: GCet the proper filename of the raw frane.

")
i ++)

/* Take the part before the dot.

= df . dMB[nbNuni . rawvat ri x[i][j];
vf. vMB[mbNuni . val ue[i][j]);

+ vi.vMB[mbNunj. xInit][j + vf.vMB[mbNuni.ylnit]

/* Find the first dot in the filenane.

135

FI LE* fp;

unsi gned char dat a;

doubl e psnrc = 0.0, psnr = 0, snr;
int i =0, j =0 c¢=-1, num

printf("file=9%", f);
if ((fp = fopen(f, "rb")) == NULL)

{
printf("Cannot open file\n");
exit(1);
}
do
{
C++;
fread(&data, sizeof(unsigned char), 1, fp);
psnrc = (double)(data - vf.rawi][j]);
psnr += psnrc;
/* printf("%l: % - % = 9%.1f\n", c, vf.rawfi][j],
i ++;
if (i == nBequence. width)
{
i =0;
J+
}
}
while (!feof(fp));
fclose(fp);

num = nSequence. wi dt h * nBequence. hei ght ;
snr = (num* 255.0 * 255.0) / psnr;

psnr = 10.0 * 10gl0(snr);

printf("\nPSNR =98. 3f\n", psnr);

return psnr;

data, psnrc);

*/

136

137

File: mjpeq.h

| *x
** NModul e: nj peg. h
** Description: This is the header file of the Mdtion-JPEG |ibrary
** added to the standard JPEG code
** \ersion: 1.0
** Created: June - August 1998
** Aut hor: Christos Bohoris
* %
*x Copyright (C) 1998 Christos Bohoris
*
*x)

#i f ndef MIPEG_DONE
#def i ne MIPEG_DONE

#endi f

#defi ne MAXSI ZE 128 /* The maxi mum wi dth or height of a frame */

#defi ne MBSI ZE 16 /* The standard size of a macrobl ock (16x16). */

#def i ne MAXNUMVB 64 /* The maxi mum nunber of macrobl ocks that can be contained in a
frame. */

#def i ne MAXNUMFRAMES 16 /* The maxi mum nunber of frames in the video sequence. */
#def i ne SWBI ZE 48 /* The search w ndow size. */

#define | NTRA 0 /* I NTRA node, no notion observed. */

#define | NTER 1 /* INTER node, notion observed. */

/* ENCCDER */

| **

** Structure: MIPEGWt i onVect or

** Description: This structure represents a notion vector

** Menbers: xDiff, yDiff, the horizontal and vertical nagnitudes of the notion
** vector. These values are positive for directions towards top or

*x I eft and negative for directions towards bottom and ri ght

**/

struct MJIPEGWt i onVect or
{

138

int xDiff, yDiff, sx, sy;

/**

** Structure: MIPEGSequence

** Description: This structure contains a series of franes of the video sequence.
** Menbers: The wi dth and height of the franes in the sequence. The nunber of
*x macr obl ocks numvBs in each franme. The number of frames, |ength,

* %

in the sequence. The filenanme of the each sequnce frane.
**/

struct MIPEGSequence

{
int width, /* The width ... */
height, /* ... and height of the frames. */
nunMvBs, /* Total nunber of macroblocks in the frame. */
I ength, /* The nunmber of frames in the sequence. */
numvbw,
nunivbh;
char* filename[40]; /* The filenanes of the frames in the sequence. */
b

struct MIPEGFraneTabl e

{

int nb[16];

int value[256] ,nvx, nvy, sX, Sy;
b
/**

** Structure: MIPEGVacr obl ock

** Description: This structure contains the basic characteristics of a nacrobl ock.
** Menbers: The val ues of |uminance of each pixel are held in
nmbVal ue[XCoor d] [YCoor d] .

* %

The val ues of XCoord, YCoord are coordinates in the macroblock starting

from

** the top left macrobl ock pi xel which has the coordinates (0,0). xBegin,
yBegin

** are the top left pixel coordinates of the nacroblock relative to its
posi tion

*x in the frame. xEnd, yEnd are the bottomright pixel coordinates of the
*x macrobl ock relative to its position in the frane.

x|

struct MIPEGVAcr obl ock
{
int nmbVal ue[MBSI ZE] [MBSI ZE], /* Val ue of each pixel in the macrobl ock. */
xBegin, /* Coordinates of pixel at the left top corner of the macrobl ock. */
yBegi n,

xEnd, /* Coordi nates of pixel at the right bottom corner of the
macr obl ock. */

139

yEnd,

sum a, nean,

node; /* |INTER or | NTRA node. */
int rMatrix[MBSI ZE] [MBSI ZE] ;
doubl e dct Mat ri x[MBSI ZE] [MBSI ZE] ;
int ghatrix[MBSI ZE] [MBSI ZE] ;
int zzMatrix[(MBSIZE * MBSI ZE) + 1];
struct MIPEGWLt i onVect or notionVector;
int runLength[256][5];

| **

** Structure: M PEGFr ame
** Description: This structure contains the basic characteristics of a frane.

** Menbers: frFilename is the filename of the frame. The structure contains
** an array of macrobl ocks nb that are contained in the frane.

*x frVal ue[XCoord] [YCoord] contains the values of |um nance of each
*x pi xel in the frane.

Y

struct MIPEG-r ane

{
char* frFilename; /* The nane of the file containing the frame. */
struct MIPEGVacrobl ock nmb[MAXNUMVB] ; /* The macrobl ocks in the frane */
int frVal ue[MAXSI ZE] [MAXSI ZE] ; /* Val ue of each pixel in the frane. */
char frMode;

b

/* G obal Variables. */
struct MIPEGSequence nfequence; /* The video sequence. */
struct MIPEGFrane franme[MAXNUMFRAMES] ;

/* Function Definitions. */

voi d MIPEGget Frame(struct MPEG-rane* frane);

voi d MIPEGset Macrobl ocks(struct MIPEGFranme* frane);

int getFrX(int x, int nbNum struct MIPEGFrame* frame);

int getFrY(int y, int nbNum struct MIPEGFrame* frame);

voi d MIPEGwti onEsti mati on(struct MIPEGFrame* p, struct MIPEGFrane* c);
int getAbs(int num;

doubl e getC(int num;

voi d MIPEGset Resi dual Matri x(int mbNum struct MPEG-rane* p, struct MPEGFrane* c);
voi d MIPEGdct (i nt mbNum struct MIPEGFranme* c);

voi d MIPEGquanti zati on(i nt mbNum struct MPEGFranme* c);

voi d MIPEGzi gzag(int mbNum struct MIPEGFranme* c);

voi d MIPEG unLengt h(int mbNum struct MIPEGFranme* c);

int MIPEGsetVLC(int rl, int vlc);

char* MIPEGset Fi |l enane(char* c);

voi d MIPEGwm it eFrane(struct MIPEGFranme* c, char node, char* nane);

140

/* DECCDER */

struct Virtual MB

{
unsi gned char val ue[16] [16] ;
int xInit, ylnit;

b

struct Virtual Frame

{
struct Virtual MB vMB[16] ;
unsi gned char raw 48] [64];

struct DecMB

char node;
int xv, yv, Xs, ys, size;
unsi gned char data[512];
int rawvatri x[16] [16];
doubl e i Matrix[16][16];
doubl e dct[16][16];
int qvatrix[16][16];
int zigzag[256];
int runLengt h[256][6] ;

}

struct DecFrane
{

struct DecMB dMB[16];
}

struct Virtual Frame vf;

struct DecFrane df;

unsi gned char* MIPEGget Vi rtual Val ues(i nt nmbNum char* fil enane);
voi d MIPEGset Virtual MBs(char* fil enane);

voi d MJIPEGrakeRawFr ane(voi d);

voi d MJIPEGset MBPosi ti ons(void);

void MIPEGwi teVirtual Frame(char* fil ename);

char* MIPEGset Decoder Fi | enane(char* c);

void MIPEGwiteVirtual Frame(char* fil ename);

unsi gned char* MPEGget FraneVal ues(char* fil enane, int* size);
voi d MIPEGget MBMbdes(char* fil enane);

voi d MIPEG nvRunLengt h(i nt nmbNum) ;

voi d MIPEGget VLC(int vlc, int* pos, int* neg);

voi d MIPEG nvZi gzag(int mbNum);

voi d MIPEQ nvQuanti zati on(i nt nmbNum) ;
voi d MIPEG nvDct (i nt nmbNunj ;

voi d MIPEGget Resi dual Matri x(int nmbNumj ;

voi d MIPECupdat eVi rtual Frame(int mbNum ;

doubl e MJIPEGcal cul at ePSNR(char* f);
char* MIPECget PSNRFi | enane(char* c);

141

